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Abstract

We present a simple game which mimics the complex dynamics found in many natural and

social systems. Players modify their strategies periodically, depending on their performances.

We propose that the agents use hybridized one-point genetic crossover mechanism, inspired by

genetic evolution in biology, to modify the strategies and replace the bad strategies. We study the

performances of the agents under di/erent conditions and investigate how they adapt themselves

in order to survive or be the best, by 0nding new strategies using the highly e/ective mechanism

we proposed. We introduce the measure of total utility of the system and use it to study the

e1ciency and dynamics of the game.
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1. Introduction

The behaviour of most of the complex systems found in natural and social environ-

ments can be characterized by the competition among interacting agents for scarce

resources and their adaptation to the environment [1–5]. The agents could be di-

verse in form and in capability, for example, cells in an immune system to great

0rms in a business centre. In these dynamically evolving complex systems the na-

ture of agents and their manners di/er. In order to have a deeper understanding

of the interactions of the large number of agents, one should study the capabilities
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of the individual agents. An agent’s behaviour may be thought of as a collection

of rules governing “responses” to “stimuli”. For example, if one sees a predator,

then one should run, or if the stock indices fall then one should take immediate

action, and so on. Therefore, in order to model any complex dynamically adaptive

system, a major concern is the selection and representation of the stimuli and re-

sponses, since the behaviour and strategies of the component agents are determined

thereby. In a model, the rules of action are a straightforward way to describe agents’

strategies. One studies the behaviour of the agents by looking at the rules acting se-

quentially. Then one considers “adaptation”, which is described in biology as a pro-

cess by which an organism tries to 0t itself into its environment. The organism’s

experience guides it to change its structure so that as time passes, the organism

makes better use of the environment for its own bene0t. The timescales over which

the agents adapt vary from one system to another. For example, adaptive changes

in the immune system take hours to days, adaptive changes in a 0rm take usu-

ally months to years, and adaptive changes in the ecosystem require years to several

millennia.

In complex adaptive systems, a major part of the environment of a particular agent

includes other adaptive agents. Thus, a considerable amount of an agent’s e/ort goes

in adaptation to the other agents. This feature is the main source of the interesting tem-

poral patterns that these complex adaptive systems produce. For example, in 0nancial

markets, human beings react with strategy and foresight by considering outcomes that

might result as a consequence of their behaviour. This brings in a new dimension to the

system, namely rational actions, which are not innate to agents in natural environments.

To handle this new dimension, game theory is used. It helps in making decisions when

a number of rational agents are involved under conditions of conJict and competi-

tion [6]. However, game theory and other conventional theories in economics, study

patterns in behavioural equilibrium that induce no further interaction. These consistent

patterns are quite di/erent from the temporal patterns that the complex adaptive systems

produce.

In this paper, we study a simple game which has most of the discussed features of

a complex adaptive system. The “mixed” strategies which the agents use to decide the

course of action must be good, especially when the agents have to be the best in order

to survive—similar to the idea of “survival of the 0ttest” in biology. So just as an organ-

ism adapts itself in the natural environment, we propose that “intelligent” agents in the

game adapt themselves by modifying their strategies from time to time, depending on

their current performances. We also borrow the concept of “hybridization” from biology

and use it to modify the strategies in the course of the game, in the same way as in ge-

netic algorithms [7–9]. Therefore, our game is a variant of the intelligent minority game

introduced in [10], based on the basic minority game [11–15]. In the game we study

here, we use the mechanism of hybridized genetic crossover where the two best strate-

gies of an agent serve as the “parents” which it uses to create two new “children” using

one-point genetic crossover [9,10] and then replaces two of its worst strategies with the

children.
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2. Model

Our game consists of an odd number of agents N who can perform only two actions

denoted here by 0 or 1, at a given time t. For example, the two actions could be

“buying” and “selling” commodities/assets. An agent wins the game if it is one of

the members of the minority group. All the agents are assumed to have access to

0nite amount of “global” information: a common bit-string “memory” of the m most

recent outcomes. With this there are 2m possible “history” bit-strings. Now, a “strategy”

consists of two possible responses, which in the binary sense are an action 0 or the

opposite action 1 to each possible history bit-strings. Thus, there are 22
m

possible

strategies constituting the whole “strategy space”. In our study, we use the “reduced

strategy space” by picking only 2m uncorrelated strategies, i.e., strategies which have

Hamming distance dH = 1
2
[16]. The Hamming distance indicates how similar two

strategies are. It is calculated as the ratio of the number of di/erent bits between two

strategy bit strings and the total length of the strategy bit string.

At the beginning of the game, each agent randomly picks s strategies which con-

stitutes its pool. Each time the game has been played, time t is incremented by unity

and one “virtual” point is assigned to a strategy that has predicted the correct outcome

and the best strategy of a player is one which has the highest virtual point score. The

performance of the player is measured by the number of times the player wins, and

the strategy, which the player uses to win, gets a “real” point. The number of agents

who have chosen a particular action, say 1, is denoted by A1(t) and varies with time.

The total utility of the system can be de0ned as

U (xt) = (1− 	(xt − xM ))xt + 	(xt − xM )(N − xt); (1)

where xM = (N − 1)=2, xt is either equal to A1(t) or A0(t) and so xt ∈{0; 1; 2; : : : ; N},
and

	(x) =

{

0 when x6 0;

1 when x¿ 0:

When xt ∈{xM ; xM + 1}, the total utility of the system is maximum Umax (=U (xM ) =

U (xM + 1)) as the highest number of players win. The system is more e1cient when

the deviations from the maximum total utility Umax are smaller, or in other words, the

Juctuations in A1(t) around the mean become smaller.

The players examine their performances after every time interval �. If a player 0nds

that he is among the fraction n (where 0¡n¡ 1) who are the worst performing play-

ers, he adapts himself and modi0es his strategies. The mechanism by which the player

creates new strategies is that of hybridized one-point genetic crossover, whereby he

selects the two best strategies (“parents”) from his pool of s strategies. Then using one

point genetic crossover [9,10], he creates two new strategies (“children”) and replaces

his two worst strategies with the children. It should be noted that our mechanism of

evolution of strategies is considerably di/erent from earlier attempts [11,17,18]. Here,

the strategies are changed by the agents themselves and even though the strategy space

evolves continuously, its size and dimensionality remain the same.
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3. Results

The time variations of the number of players A1(t) who choose action 1 are plotted

in Fig. 1. We observe large Juctuations around the mean for the basic minority game

in Fig. 1(a). In Fig. 1(b), we observe the e/ect of hybridized genetic crossovers on

the Juctuations around the mean. Interestingly, the Juctuations disappear totally and

the system stabilizes to a state where the total utility of the system is at maximum,

since at each time step the highest number of players win the game. As expected,

the behaviour depends on the parameter values for the system. For example, as we

increase m it is more unlikely that the system stabilizes. Also, we have to increase s,

the size of the pool of strategies, in order that the system stabilizes. The dependence

of the system’s stability on these parameters is being studied in details in [19]. So the

important fact here is that the behaviour is totally di/erent from the behaviour of the

basic minority game, where increasing s usually leads to larger deviations [11,12]. It

is also interesting to note that starting from a situation, similar to what is shown in

Fig. 1(a), simply allowing the agents to adapt themselves by modifying their strategies

using the mechanism we have proposed, drives the system towards a state where the

total utility is optimized.

In Fig. 2, we further analyze some measures related to the simulation in Fig. 1(b).

If we plot the performances of the agents in a basic minority game, we 0nd that

the distribution of the performances is quite symmetric around the mean and the per-

formances of the players do not vary remarkably during the game [11]. However,

in our model the competition is very sti/ and there are lots of ups and downs in

the performances, and 0nally, when the system reaches an optimal state, the players

can be divided clearly into two groups depending on their performances, as shown in

Fig. 2(a). The performances in all cases are scaled such that the mean performance is

zero at every time step, so that we can compare them easily. Fig. 2(b) shows the
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Fig. 1. Plot to show the time variations of the number of players A1 who choose action 1, with the parameters

N = 1001, m = 5, s = 10 and t = 4000 for (a) basic minority game and (b) our game, where � = 25 and

n = 0:6.
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Fig. 2. Plots to show: (a) the performances of the players in our game for the best player, the worst player

and four randomly chosen players, (b) the time variation of the history and (c) the Hamming distances for

the 0nal pool of strategies for all the players. The parameters used for simulations are N = 1001, m = 5,

s = 10, t = 4000, � = 25 and n = 0:6.
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Fig. 3. Plot to show the variation of total utility of the system with time for the basic minority game for

N = 1001, m= 5, s= 10, t = 5000, and our game, for the same parameters but di/erent values of � and n.

Each point represents a time average of the total utility for separate bins of size 50 time-steps of the game.

The maximum total utility (= (N − 1)=2) is shown as a dashed line. The data for the basic minority game

is shown in circles. The plus signs are for �=10 and n=0:6; the asterisk marks are for �=50 and n=0:6;

the cross marks for �=10 and n=0:2 and triangles for �=50 and n=0:2. We have taken ensemble average

over 70 di/erent samples, in each case.

evolution of the history. Since m = 5, there are 2m = 32 possible history bit strings

denoted by a number between 1 and 32. Before the system reaches the optimal state,

histories vary over the whole range of possible outcomes as shown in Fig. 2(b). But

after reaching the stable state, the history is restricted to one value. So, one group wins

while the other loses continuously, depending on the strategy spaces of the players.

To study the di/erences in the strategies of each players’ pool after the system has

reached the stable state, we have calculated the average Hamming distance over all the

strategy pairs in the players’ pools. Results are shown in Fig. 2(c). If all the strategies

in a pool are the same, average Hamming distance is zero, for uncorrelated strategies,

it is 1
2
and for totally anti-correlated strategies 1. Surprisingly, we 0nd that for most of

the players the average Hamming distance calculated for the whole pool is zero, which

implies that the players have evolved their strategies and found only one strategy for

use.

In order to study the e1ciency of the system and its dynamics, we have introduced

the study of the variation of the average total utility of the system U (xt) with time t.

The results are shown in Fig. 3. We 0nd that for the basic minority game the total
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utility does not change much throughout the course of the game. However, in the game

we study, we can clearly see that the total utility of the system increases as the time

passes on and eventually saturates (or becomes practically constant). We can de0ne

a characteristic time �, during which the total utility reaches a saturation point. As

intuitively expected, this characteristic time depends on the parameters of the system.

It is interesting to note that this utility measure is very e/ective in characterizing the

dynamics of an adaptive game. We calculate the mean of U (xt) when it has become

practically constant or saturated, and denote it by Usat . We then observe the asymptotics

of the quantity (Usat−U (xt)), i.e., how this quantity approaches zero after a long time (t

is large or even in0nity). The asymptotics display very interesting dynamical behaviour.

For example, when N=1001, m=5, s=10, t=5000, �=50 and n=0:2, the asymptotics

suggest that eventually the behaviour is that of a power law with an exponent of about

−1:5. We defer the detailed studies and results for a future communication [19].

In order to demonstrate that the “intelligent” players who adapt themselves in the

course of the game, by modifying their strategies using the hybridized one-point genetic

crossover, perform better than “normal” players, who do not adapt themselves, we have

tested the players in two di/erent situations. The 0rst situation is where all the players

play the basic minority game but later we select the worst player and allow it to adapt

itself and thus modify its strategies. We 0nd that the player starts winning immediately

and eventually comes out to be a winner as shown in Fig. 4(a). Further, we choose two

other worst players at two di/erent times and allow them to modify their strategies also.

These two players too begin to perform very well. We 0nd that the performances of

these chosen “intelligent” players are much better compared to the “normal” players of

the basic minority game. The second situation consists of ten “intelligent” players who

are capable of modifying their strategies and the rest are “normal” players who simply

play the basic minority game. We 0nd that the intelligent players perform extremely

well in comparison to the other normal players, and form a separate group, as shown

in Fig. 4(b). The competition amongst themselves is very sti/ as can be seen from the

inset of Fig. 4(b).

These two situations and the results clearly show how e/ective the adaptation of

agents can be in a complex adaptive system. The mechanism of modifying the strategies

is also very successful as it allows a player to 0nd new strategies which maximizes

the players’ individual utility. However, the total utility of the system does not change

much as the fraction of adaptive players is very small in both cases. It would be

interesting to study the variation of the total utility of the system with the fraction of

adaptive players.

4. Summary

In summary, we have proposed a game where the players adapt themselves to con-

tinuously changing environment, thus reproducing interesting temporal patterns that are

usually created by complex adaptive systems in nature. The mechanism of adaptation

we have introduced here seems to be very e/ective in all the cases we have studied,

as can be seen from the individual performances of the players or from the measure of
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Fig. 4. Plots to show the performances of the players: (a) for three players who were the worst players in

the basic minority game at di/erent times but started winning once they started modifying their strategies

using the hybridized genetic crossovers and the best “normal” player, the worst “normal” player and two

randomly chosen “normal” players and (b) for the ten “intelligent” players who modify their strategies using

the hybridized genetic crossovers and cluster together in the winning group and the best “normal” player,

the worst “normal” player and six randomly chosen “normal” players. The inset of (b) shows performances

of ten “intelligent” players who modify their strategies using the hybridized genetic crossovers and cluster

together in the winning group in a magni0ed scale. The parameters used for simulations are N=1001, m=5,

s = 10, t = 10000 and � = 10.
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the total utility of the system. Here, we also introduced the total utility of the system

varying with time, as a di/erent measure than the usual �2=N , which can be used to

study not only the e1ciency of the game but its entire dynamics as well. The perfor-

mances of the players in di/erent conditions always seemed to be better when they

adapted themselves compared to the players who did not. We conclude that using this

mechanism one could increase remarkably the individual utility and the total utility of

the system as well, if the fraction of adaptive players is signi0cant.
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