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We study a statistical model consisting Mfbasic units which interact with each other by exchanging a
physical entity, according to a given microscopic random law, depending on a parameerfocus on the
equilibrium or stationary distribution of the entity exchanged and verify through numerical fitting of the
simulation data that the final form of the equilibrium distribution is that of a standard Gamma distribution. The
model can be interpreted as a simple closed economy in which economic agents trade money and a saving
criterion is fixed by the saving propensity Alternatively, from the nature of the equilibrium distribution, we
show that the model can also be interpreted as a perfect gas at an effective teméigtundnere particles
exchange energy in a space with an effective dimenBioy.
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I. INTRODUCTION have been used to study wealth distributiph5-19g. In gen-

Statistical physicists like to understand how and why Sys_eral, from these studies it emerges that it is possible to obtain

S Ao ower law distributions in the framework of some econom
tems evolve from an initial state toward an equilibrium mac-P Y

roscopic state. The equilibrium state, far from being just themodels, whereas other models predict exponential tails of the

“final state” of the dynamical evolution, actually reflects theIncome distribution. However, an understanding of the de-
details of the underlying dynamics. To’ write down the “mi- pendence of the distributions on the underlying mechanisms

. o . . . and parameters is still missing. For this reason, it is our gen-
croscopic equation” governing the dynamics of the evolution

is a major goal. The various probability distributions result-eral aim fo study a statistical model of closed economy,
) Jor goal. prob: Y . '~ which can be either solved exactly or simulated numerically,
ing from the different corresponding microscopic equations

have a relevant interest, in that they can be used to derivand analyze the relation between the microscopic equation

most of the macrosconic properties of the system. One of thgnd the kind of macroscopic money distribution it results in.
OpIC prop y - IONe oT giq study can be of particular interest, since it can provide
foremost examples is the Maxwell-Boltzmann distribution

for the velocities, which can be obtained as a solution of th%ﬁ?ees insight as to under what conditions the Pareto law

equation which Boltzmann proposed for the evolution of the In this paper, we study a statistical model consistingyof

probability distribution for a dilute gas. : . S . ;
One of the current challenges is to write down the micro-baS'C units which interact with each other by exchanging a

scopic equation which would correspond to the century oldDhySiCaI entityx, according to a given microscopic law with
Pareto law{1] in Economics, stating that the higher end of one constant paramet&r We study the stationary probabil-

the distribution of income(x) follows a power-law ity distributionsf(x) for different values ofA. Furthermore,

we verify through numerical studies that the final form of the
f(x) o« x 179, equilibrium distributionf(x) is that of a standard Gamma
. . distribution. Then in Sec. Il, we interpret the model as a
wherex is the income(money and the exponen& has @  gimnle closed economy in which agents trade money and

value in the interval .1_22_.3' To this aim, se\_/e_ral studies have a saving criterion fixed by the saving propenaityn
have been made to investigate the characteristics of the real,. Ill, using the nature of the equilibrium distribution, we

income distribution and provide theoretical models or expla—shOW that the model can also be interpreted as a perfect gas

nations. For example, Levy and Solomon studied the genely oo effective temperatur&(\), made up of particles ex-

alized Lotka-Volterra equations in relation to power-law : . . . ) _
o ; changing energy in a space with an effective dimension
wealth distribution[6,7], whereas Ispolatoet al. [8] studied D(\). Finally, in Sec. IV, we draw conclusions.

random exchange models of wealth distributions. Other re-
lated studies of exchange models in closed economies have
followed [9-14 and, recently, some different approaches IIl. THE MODEL ECONOMY

We begin by considering a simple model of closed
economy, in whichN agents can exchange money in pairs
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signed between the two agents—with or without “savings” 25 = *

criterion. We are aware that modeling economy systems by o A=0.0
agents exchanging money randomly sounds unrealistic, bul ’ tgé
as it appears clearly in the following, the specific form of the 2 e
microscopic law is not essential for the issues dealt with in A=0.7
the paper. Rather, the main point here is its conservative 1=0.9

character. The exchange law is such that the money is con 1.5 - 1
served during the transaction, i.&#+x;=x +X/, wherex;
andx are the money values after the transaction. This im-
plies that at any time the average initial monegso repre-
sents the average mongy)=Xx. The generalized equations
which describe the earlier transactions are

=
bl
g

X =X+ e(1 =N (% +X),

X =M+ (1= €)1 =N+ %), @

where\ is called the “saving propensity” angdis a random

number uniformly distributed in the intervéD, 1). FIG. 1. Equilibrium money distributions for different values of
the saving propensity, in the closed economy model defined by
A. Case with A=0 Egs. (2) and (4). The continuous curves are the fitting functions,

. . ) . _defined in Eq(6) with the values ofn governed by Eq(5). Note
First, we deal with the case where there is no saving Crithat for the simulatior(x)=1.

terion and\=0 in Egs.(1). The exchanges are then made

according to the following law: B. Case withA>0

Xi = €(X + X)), We now deal with the case where there is a saving crite-
rion, by assuming that the saving propensity, which repre-
xj’ =(1-ex+X). (2 sents the fraction of money saved before carrying out the

. . . transaction, is nonzero, i.e\>0 [9,11]. Conservation of
It can be noticed that, in this model, agents have no debtlsnoney still holdsx;+x;=x/ +x!, but the money which can be

after the transaction,. I.e., they are a]ways Ieft. with a.mone¥eassigned in a transaction betweeniﬂheand thejth agent
amountx=0 or, equivalently, thak; is a positive definite -« ow decreased by a factdr-\). The exchanges are

quantity, ifx>0. _made according to Eq$l), which can also be rewritten as
It can be shown that, as a consequence of the conservatioly o\ vs-

of money, the system relaxes toward a Gibbs money distri-

bution[9-11:
L . X\ =X + AX,
fi(xX)=-—exp - -—],
=g o35 ©
. X =X — AX,
where (x) represents the average money. This means that, 1A
after the relaxation, most of the agents have a very small
amount of money, while the number of very rich agents is _
exponentially small. In other words, for a givet>0, the Ax=(1=Mleg = (1 =exl, @)
number of agents witli>x’, as well as the total amount of
money they own, exponentially decreases withThe equi- in which money conservation is manifest.
librium state represented by the Gibbs distributi@ has We studied the equilibrium distribution of this model

been shown to be robust, in that it is reached independentlihrough numerical simulations, for various values\gffor
of the initial conditions and also in models with multiagent N=500 agents, again each agent having moxey in the
transactions. initial state. In each simulation a sufficient number of trans-
We have reobtained the exact Gibbs solution for the casactions, as far as I0depending on the value af was used
A=0 by numerical simulations of a system witi=500 in order to reach equilibrium. The final equilibrium distribu-
agents, each agent having initially a money amourt. The  tions, for a given\, were obtained by averaging over>10
system was evolved for $@ime steps—i.e., transactions—in different runs. The numerical data are shown in Figcdses
order to reach equilibrium, and the final equilibrium distri- A # 0).
butions were averaged over *l@ifferent runs. Figure 1 We found an analytic form for the equilibrium distribu-
shows that the numerical resuitspen circles foh=0) are in  tion, for a given\ (0<A<1), which turns out to fit ex-
good agreement with the Gibbs distributiqgnontinuous tremely well all datg[19]. The function is conveniently ex-
line). pressed in terms of the parameter
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FIG. 2. Same quantities as in Fig. 1, but on a linear-logarithmic 108
scale. Note that for the simulatigm)=1. S
10000
3\
nN)=1+—. 5 100
(M) =1+ 7 (5)
1
This particular form ofn(\) was suggested by a mechanical 0.01 | . —
analogy, discussed in Sec. lll, between the closed economy 0.1 A 1

model withN agents and the dynamics of a gashbfnter-

acting particles. Then the money distributions, for arbitrary  F|G. 3. The parameters (top) and a, (bottom) vs \, obtained

values of\, are well fitted by the function

f(X) = a, x " lexp(— nx{x)),

1 /(n\"
a“"ﬁ(@) ! ©)

wheren is defined in Eq(5) and the prefactaa,,, wherel'(n)

from numerical datgdot9 and the corresponding analytical formu-
las(continuous curvegiven by Egs(5) and(6), respectively. Note
that for the simulatio{x)=1.

__dIEn
Yn(é) = dé T(n) .

The Gibbs distribution(3) is a special case fon=1. The

9)

is the Gamma function, is fixed by the normalization condi-term¢x)/n, on the left-hand side of Eg), is just the scaling

tion [pdx f,(x)=1.
The fitting curves for the distributiofcontinuous curves

factor appearing when the change of variable, fibto X, is
made in the last equation in order to obtain the distribution

are compared with the numerical data in Fig. 1. The fittingfa(X) for the variablex.

describes the distribution also for small valuesfof), as

We notice that, with respect to the Gibbs distribut{@i,

shown by the linear-logarithmic plots in Fig. 2. In Fig. 3, the the distribution defined by Eqg6) contains the powex"*

numerical values of the parameters\) anda,(\) obtained
directly from fitting the datgshown as dotsare compared
with the respective fitting function&) and (6) (shown as
continuous curves

By introducing the rescaled variable

£=nx(x), ()
the probability distribution6) can be rewritten as
Rt =L ertayyo g =
fn(x)_r( n)é exp(= &) = (9, 8

wherey,(§) is the standard Gamma distributig20,21. The
cumulative distribution fory,(¢) is the incomplete Gamma

function I'(£,m)=[7 d&’ y(&):

and the factorn in the exponential, which qualitatively
change the distribution shape. First, they lead to a mrgde,
different from zero. The mode is shown as a function of the
parametei in Fig. 4, where the dashed curve represents the
theoretical prediction that the modg,=3\/(1+2\) obtain-
able from Eq.(6). Second, the presence of the factois
relevant for the mechanical analogy, considered in detail in
Sec. Ill. Finally, in the limith — 1 (i.e., n— ), the distribu-
tion f(x) tends to a Diracd function, peaked around the
average valuéx). A qualitative picture of the evolution of
the shapes of thé,(x)’s, for A going from zero to unity, is
obtained by inspection of the various curves in Fig. 1. A
more rigorous derivation of the asymptotic distribution for
N—1 can be made by studying the characteristic function
¢(q) [20,27. The Gamma distributiony, (&) for the dimen-
sionless variable¢ has a characteristic functiomp,(q)
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1 T T T & D= two dimensions, when its average value is given by
__,r"" (X),=2(kgT/2). In all other case$D # 2), it is easy to show,
08 | .. 1 starting from the Maxwell-Boltzmann distribution for the ve-
g locity in D dimensions, that the equilibrium kinetic energy
0% [ . . distributionf(x) coincides, apart from a normalization factor,
3 with the Gamma-distributiony,(¢) with n=D/2 for the re-
2,1 . duced variable=Dx/2(x)p:
N
‘,’ D D/2
v ] 2(p Dx
X _
f(x) = ——2—xD12 lexp(— )
0 4 1 1 1 1 F(B) 2<X>D
0 0.2 0.4 N 0.6 0.8 1 2
FIG. 4. Variation of the mode with the parameterDots rep- Dk.T
resent the numerical data, while the dashed curve was obtained (X)p =D{x); = B , (14
theoretically. 2

) where(x)p represents the average value of kinetic energy in
=[o d¢ expliqd) y1(§)=1/(1-iq). The characteristic func- D dimensions. The analogy between the fadoin the ar-
tion of the Gibbs distributiorf;(x) in Eq. (3) is obtained by  gument of the exponential function in Ed.4) and the analo-

rescalingq by the constant factaox/ £=(x): gous factom in Eq. (6) is to be noticed. The main difference
, 1 is that, whileD is an integer number by hypothesis, the pa-
$1(q) = (1 -ig(x)) ™" (100 rametern(\) can assume in general any real values larger
The characteristic function of the generic Gamma distributhan or equal to one. o
tion y,(£) is simply given by thenth power of,(q) [20,21], In Eq. (14) temperature appears implicitly a§

#i(q)=1/(1-iq)". Analogously, the corresponding charac- =2(X)o/ksD. This suggests that also in the closed economy
teristic function off,(x), Eq. (6), is obtained by scaling by =~ model considered above the effective temperature of the sys-
x/ E=(x)/n: tem should be defined &)/n, rather than(x). This is a
natural consequence of the fact that the average value of
dn(@ = (1 -ig(x)/m)™. (11)  kinetic energy inD dimensions is proportional tb, due to
the equipartition theorem, and that an estimate of the ampli-
tude of thermal fluctuations, which is independent of its ef-
&n(0) — expigdx)). (12) fective dimension, can be obtained from the ratig,/D.
Direct comparison between Egd4) and (6) leads to a
mal but exact analogy, between money in the closed
economy model considered earlier, with agents, saving
+00 propensity GsA <1, and given average monéy), on one
fa(¥) = (277)_1J dg exp(=igx) ¢,(a) — 8(x=(x)). hand, and kinetic energy in an ensembleNoparticles inD
- dimensions at temperatuf® on the other, if the effective
(13 dimension and temperature are defined as

Thus, in the limitn— (A — 1), one obtains

The corresponding distribution is obtained by transformingfOr
back the characteristic function, i.e.,

This limit shows that a large saving criterion leads to a final B _2(1+2)
state in which economic agents tend to have the same D(\)=2n(\) = 1-\ '
amount of money and, in the limit of— 1, they all have the
same amoungx). . () . 1-) s
Ty 1+
Il. THE GAS MODEL ) ) ) o
respectively. This equivalence can be qualitatively under-

The equilibrium distributiong3) can also be interpreted stood in terms of the underlying microscopic dynamics by
as the Gibbs distribution of the energyfor a gas at tem- considering the example of a fluid of interacting particles. In
peratureT=(x)/kg. This establishes a link between the type one dimension, particles undergo head-on collisions, in
of closed economy models considered here and statisticathich they can exchange the total amount of energy they
systems, suggesting a re-interpretation of the economiiave. In an arbitarylarge) number of dimensions, however,
model in terms of a mechanical system of interacting parthis is not possible for purely kinematic reasons and only a
ticles. The introduction of a saving parameker 0 changes fraction of the total energy is actually released or gained on
the shape of the Gibbs distribution into that of a Gammaaverage in a collision. Since the equipartition theorem im-
distribution, but the correspondence with a mechanical sysplies that on average kinetic energy is equally shared among
tem is lost only apparently. In fact, the Gibbs distribut@» the D dimensions, one can expect that, during a collision,
can represent the distribution of kinetic enengyonly in  only a fraction~1/D of the total energy is exchangédnd
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that a corresponding fraction~1-1/D is “saved). This  on the other hanf{x); being in this case the average value in
estimate~1/D of the exchanged energy is to be comparedtwo dimensiong
with the expression for the fraction of exchanged money ob- The fact that we obtain basically the same equilibrium
tained from Eq.(5) using n=D/2, namely 1-x=3/(D/2 distribution, characterizing the kinetic energy of a gas of
+2), which was in fact found starting the fitting of the nu- particles, suggests some general considerations about closed-
merical data from a function prototype of a form similar to economy models. The mechanical analogy illustrated earlier
1/D. can be addressed to the fact that the system is described
statistically by a microcanonical ensemble, just as a closed
mechanical system, in which the exchanged quantity is con-
IV. CONCLUSIONS served. Thus, a saving propensity larger than zero or any

. - . . other change in the microscopic law can be expected to lead
We have studied a stgt|st|cal mOd?" which can be INeT45 4 different shape of the equilibrium distribution, as shown
preted as a generalization of the simple closed econom

: ; . th the present work, in which, e.g., the effective number of
model, |n'wh|ch a.random reass_lgnment of the total agenkimensions and temperature may be different. However, the
moneyx, mvolve_d in the transaction, takes pIace._The gen'simple fact that the money is conserved implies that one
eralized model is characterized By agents carrying out annot obtain an arbitrary distribution but, rather, only equi-

transactions according to a saving criterion, determine brium distributions related directly to the microcanonical
quantitatively through a saving propensity>0. Alterna- ensemble

tively, it can be considered as representing a ga ofter-
acting particles which on average exchange only a fraction of ACKNOWLEDGMENTS
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