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Anomalous transmission in a hierarchical lattice
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We present an analytical method of studying “extended” electronic eigenstates of a diamond hierarchical
lattice, which may be taken as the simplest of the hierarchical models recently proposed for stretched polymers.
We use intuitive arguments and a renormalization-group method to determine the distribution of amplitudes of
the wave functions corresponding to some of these “extended” eigenstates. An exact analysis of the end-to-
end transmission property of arbitrarily large finite lattices reveals an anomalous behavior. It is seen that while
for a special value of the energy the lattice, however large, becomes completely transparent to an incoming
electron, for the other energy eigenvalues the transmission decreases with system size. For one such energy
eigenvalue we analytically obtain the precise scaling form of the transmission coefficient. The same method
can easily be adopted for other energies.

[. INTRODUCTION the other hand, the topology of the lattice in certain earlier
cases has been shown to play an important role in sustaining
Hierarchical lattice models have played an important part'extended” electronic wave functiorfs? Such states some-
in understanding the statistical mechanics of phase transtimes exhibit anomalous transport properties, in the sense
tions. Such lattices differ, both in topology and in geometry,that though the amplitude of the wave function remains non-
from the Bravais lattice5.One major feature of such struc- Zero even at distant parts of arbitrarily large lattices, the end-
tures is their scale invariance, which enables an exact impld®-€nd transmission of any incident wave packet sometimes

mentation of real-space renormalization-groyRSRG  displays a power-law decdly. _ _ _
techniques:™ Apart from statistical mechanics, studies of Above exact results are available for hierarchical models

the electronic spectrum of such lattices have also revealef) Which there is a finite variety of the nearest-neighbor en-
striking properties, not shared by common crystallineV'ronm_em aro_und a Iqttlce sn(es_trlctly_ speaklng, in any hi-
structureS~’ For example, Domangt al® solved the Sckiro erarchical lattice aII_S|tes are mngyalent if one looks be-
dinger equation on a variety of hierarchical lattices using aryond the nearest neighborhe situation may thus become
exact recursive scheme. In the thermodynamic limit, the enduite challenging if one tries to explore a case where the
ergy levels were found to be discrete, very closely spacef@nge of the coordination number of the lattice points in-
and highly degeneraf"e.'l‘he electron localization problem Créases with the generatlon of bigger and bigger Igtuces._One
however, is not easy to understand on hierarchical lattices$Uch example is the well-known diamond hierarchical
The fluctuating local environment around each lattice poin!""tt'ce1 in which the COOLdJTat'O” number of the vertices
is likely to localize the electronic wave functions in most "ange fromz=2 t0zy,,=2""" for anNth generation lattice.
situations, though for some hierarchical or fractal structured Ne thermodynamics of spin models on a diamond lattice has
like the Seirpinski gasket and the Vicsek fractal, “extended” Peen studied exactly by RSRG methg}ngt its electronic
electronic states have been repofédhis aspect makes the Properties have not been really studied in detail, a part of
study of electronic properties of hierarchical lattices interestWhich we intend to address in the present communication.
ing. Normally, the “extended” character of electronic wave- Our mtergst in the dlgmond_lattlce is tvyofold. First, we wish
function is associated with translational invariance of the un{0 investigate analytically, if there exists any “extended”
derlying lattice and, a hierarchical lattidkke the present

one does not have any translational periodicity by virtue of

its construction(see Fig. 1 However, we are familiar with

several one dimensional examples, viz. the one-dimensiong
random dimel° or quasiperiodic lattice modéfswhere one N-1
comes across situations in which local positional correlation
between constituent “atoms” gives rise to a firtfteor

infinite!* number of “extended” electronic states even

though these lattices are not periodic. In hierarchical lattices, FIG. 1. First three staggse., N=1,2,3) of the construction of
such local positional correlation is not always obvious. Ona diamond hierarchical lattice.

N=2
N=3
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electronic eigenstate though there is no translational periodat every vertex of the lattice. To study the electronic proper-
icity in this lattice. Moreover, if such states do exist then, toties of the diamond lattice, we work with the tight-binding
our mind, it would be interesting to study their amplitude Hamiltonian with nearest-neighbor approximation:

profiles and also to study the transmission properties of ar-

bitrarily large finite lattices at those special values of the

electron-energy for which the distribution of the amplitudes H =2 Ei|i><i|+z tij|i><j|v (1)

is non-trivial. Second, we note that similar hierarchical struc- ' <”>
tures have recently been proposed by Samukhial1? as a
possible basic structure of stretched polymers. In stretche
polyacetylen_e the polymer network is cqnstructed by coupled As we are primarily interested in the topological aspect of
p.olymer.chams onente_d along some directiéithe (m,n) he system we set identical values to all the site energies, i.e.,
hierarchical pseudolattice that serves as the model for spceizé and all the hopping integrals are taken to be the same,
polymers may be com_posed, according to Ref. 12 b_y taklng_e_' tij=t (chosen to be the scale of energidowever, to

n hands forming a chain o+ 1) atoms and then joining facilitéte the renormalization group calculations we shall

such chgms |n'paraIIeI. Itis t'hen quite obvious th‘."lt our d".""designate the site energy of a site with coordination number
mond hierarchical structure is a (2,2) model lattice in this

. . z, ase,. Therefore, in arNth generation lattices;’s range
group (see Fig. 1 So, an analytical approach to study thefrom etoe, wherez,, = 2N"1.

transport properties of a diamond structure seems to be an ) . ) . )
Let us, first of all, try to give a simple intuitive picture of

interesting step towards the understanding of the properties i ! -
of the general ifi,n) structure. how to construct a wave function that will have a nontrivial

Recently, Zhuet al® numerically calculated the trans- disribution of amplitude over the entire lattice, irrespective
mission coéfficient of therf,n) polyacetylene model as a of its size. We work with the difference equation version of

function of electron energy for differentr(n) values and at e Schrdinger equation,
different stage numbers. Interestingly, they found, among
very fragmented patterns, many energy values for which the (E—e) =t 2 o @)
transmission coefficient turns out to be unitr very nearly P e Wy
so for up to fifth-generation structures. Also, they have re-
ported (numerically obtainedscaling behavior of conduc- where, y; is the amplitude of the wave function at tfith
tance for the n,n) structures, though its precise form is not site. We shall be looking for energy eigenvalues that solve
known. In view of this, we consider the simplest (2,2) ver-the above equation consistently all over the lattice and yet
sion, i.e., the diamond lattice and make an analytical attempfield a nontrivial distribution ofiy;’'s. We begin withN=3,
to see if such a structure ever becomes completely or pai-e., where we have at least one class of sites witl2 (here,
tially transparent to an incoming electron. Most interestingly,z,... is 4). By inspection we can see that if we chodSe
we find that it is possible to get a special energy eigenvalue- ¢,, then this equation satisfies the Satirmer equation
for which arbitrarily large-sized diamond hierarchical latticesconsistently at all sites if we demand that the amplitude of
will have transmission coefficient equal tmity. We work  wave function vanishes at sites with coordination number
out a scheme based on an intuitive approach to determine theur. Extending this idea, we find that indeed we can satisfy
distribution of the amplitudes of the wave functiogf for  Schralinger equation locally at all sites in any arbitrarily
this special energy on a small sized lattice and then use aarge lattice provided we set the amplituge at a site with
RSRG approach to work out the distribution in lattices for coordination numbez, equal to zero for alE>2. That is, in
higher generations. The central idea is not too difficult tothis scheme, the electron cannot “feel” the presence of the
extend to the generaln(,n) case. Using the same RSRG sites withz>2. This helps in attaining an “extended” char-
formalism we evaluate a whole hierarchy of energy eigenacter of the wave function. It may be mentioned here that, a
values for which we again have nontrivial distribution of the similar technique was used earlier in the case of a Vicsek
amplitudesy; over the entire lattice. The end-to-end trans-fractal® Here, it is to be noted that the solutions of the Sehro
mission across lattices of gradually increasing size is nowlinger equation on such a lattice will be highly degenerate
found to decay for this second group of eigenvalues. Weand we are exhibiting one such case only. In Figs) and
explicitly calculate the scaling behavior for one such case(b), the amplitude distributions f&=e,=0 are given on a
and obtain a precise form of the power law followed by the|attice with N=3 and N=4, respectively. The pattern of
transmission coefficient. Scaling forms for other energies cagistribution of the amplitudes for thBl=4 case has been
be obtained following the scheme prescribed by us. In SeGptained by joining the extremetidsandB [Fig. 2(a)] of the
Il, we describe our model and the method, in Sec. lll thepasic N=3 plaquette (which now becomes the building
transmission coefficient is discussed, and we draw conclipjock for the next generationside by side such that the
sions in Sec. IV. vertex B of one plaquette falls on the vertéx of the next
[Fig. 2(b)]. Following this strategy we can use ti=4
plaguette as the basic unit and determine the amplitude-
distribution on an N=5 lattice by joining the N=4

In Fig. 1, we show the first three stages of construction oflaquettes at the vertices haviag 8, where the amplitude
the diamond lattice following Berker and Ostluhdd de-  of the wave function is zero. The method can be extended
tailed discussion on the construction and topology of latticegasily to construct the distribution pattern for higher genera-
belonging to this class is given in Ref. 1. The atomic sites sitions.

here ¢ is the on-site potential and; is the nearest-
eighbor(NN) hopping integral.

Il. THE MODEL AND THE METHOD
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nomial equation inE. Though, it is difficult to provide a
complete proof, we have performed explicit calculations up
toN=5 and forn=1 and 2. In each case it turns out that the
solutions of the equatiok = €,(n) satisfy the Schrdinger
equation all over the lattice with a nontrivial distribution of
the amplitudes of the wave function. Therefore, it is tempting
to make the conjecture that the real roots of the equdfion
= e,(n) will correspond to the “extended” eigenstates in the
general case, if we follow the same prescription. When
mapped onto the original lattice the wave function will van-
ish at sites with some value afonwards and will remain
finite at all other lattice points with lower values nfLet us
clarify this idea by discussing two specific situations. First,
we chooseE=¢€,(1). Now, we should have at least dh
=4 |attice as our starting structure, whegg,,= 8. We then
renormalize it once to cast it into an effectil= 3-stage
lattice with z,,,,,=4. We find that the solutions of the equa-
tion E=e,(1) areE=£2, with all ,=0 initially andt=1.
Each of these energy values consistently satisfies the Schro
dinger equation everywhere on the renormalized lattice pro-
vided we fix ;=0 at thez=4 sites on this renormalized
structure. When mapped onto the origimd 4-stage hier-
archical structure, we see that the amplitude of the wave
function vanishes only at the vertex with the highest coordi-
nation number, i.e., 8 and it is nonzero at all other points.
The rule for constructing such a distribution may be formu-
lated as follows. We consider two plaquettes, type | and type
Il, each being arN=3 diamond lattice. In Fig. &), the
(b) plaguette | is shown. In type II, each nonzero amplitude of
the wave function is of opposite sign to that at the corre-
FIG. 2. Distribution of the amplitudes of an extended wave sponding vertex in type I. In both of them, the Satirmer
function atE=0 on(a) anN=3 lattice anc(b) anN=4 lattice. All equation is satisfied at each vertex fe=2. These two
€'s have been set equal to zero atd1. yj's take on values plaquettes, | and II, are then joined end to end in an alternate
—1,0,and 1 on different site). fashion such that the vertices with =0 fall on each other
) [Fig. 3(b)]. In this way, theN=4 structure is built, and by
The above idea can now be coupled to an RSRG scheM&jeciing theN=4 structure as the basic unit we can con-
to extract other possible energy eigenvalues. Starting frong ,«t the pattern for aN="5 lattice by joining them suitably
any arbitr_arily large finite versi_on of the hiergrchical dia- 4t the extreme pointéwith ¢, =0). The scheme can go on
mond lattice, we can renormalize the lattinetimes. The ¢, qiher higher order lattices. It is to be appreciated that, for
recursion relations for the site energies and hopping integra{igher generations; will remain zero at all vertices witt
are, respectively, given by =8,16,32.... Theeven number of the nearest-neighbors
2782(n—1) helps maintaining the value @f; equal to zero at these sites.
[ ——— ©) For the other sites witlz<4 at any generation, the Schro
[E—ex(n—1)] dinger equation is locally satisfied everywhere, once it is
satisfied at a lower generation.

€(N)=e€x(n—1)+

and
Second, we consideE=e,(2). Here, we need to start
2t%(n—1) from anN=5 structure. We map this lattice onto &3
t(n)= m (4) version with renormalized parameters and foige=0, as

before, at the sites witz=4 on this renormalized lattice.
Here, e,(n) andt(n) denote, respectively, the values of the The effectiveN=3 lattice with the distribution of the ampli-
on-site potential and the hopping integral, at ke stage of tudes is presented in Fig(a&. When unfolded to retrieve the
renormalization. original N=5 lattice, we now find that the amplitude is zero
Now, suppose we start with aith generation lattice. We only at the vertices witte=16, and three new amplitudes
renormalize this latticem=N—3 times and bring it down to *a, *£b, and*c appear az=2 and 4 sites. One quarter of
an “effectively” third generation lattice where=2 and 4. the full N=5 lattice is shown in Fig. &) with the distribu-
The site energies and the hopping integral for this renormaltion of the valuesa, b, andc. The complementary portion
ized version are calculated using E@3) and (4). We then  with —a, —b, and—c is not shown, but can easily be con-
apply the earlier trick on this renormalized lattice, i.e., weceived of. In order to satisfy the Schiinger equation con-
make the amplitudeg; vanish at thez=4 sites(on the re- sistently at each vertex, we see tlaat, andc should take
scaled version This happens foE=e,(n). This is a poly- values E?—8)/8E, (E2—8)/8, andE/8, respectively, pro-
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-1/2

(b)

- FIG. 4. Amplitude distribution on(a) an effectively N=3

(b) plaguette obtained by renormalizing &=5 lattice twice andb)

) ) . one quarter of the originaN=5 version forE=e,(2). Dashed
FIG. 3. Amplitudes of a wave function da) the basic plaquette  jines at the two extreme vertices indicate the presence of comple-

I, which acts as a building block of @i=4 lattice and(b) anN 1 oniary plaquettes. Alk's have been set equal to zero andl.
=4 lattice forE=¢€,(1). All ¢’s have been set equal to zero and The values of, b, andc are given in the text.

t=1. ¢;’s take on values-1, —1/2, 0, 1/2, and 1 on different sites

. other eigenvalues can be obtained by extending the earlier
vided the energ)E is a solution of the equatioB*—12E?  ideas. Similar results can be obtained for the general case
+16=0. This is precisely the polynomial equation that is with E= e5,(n).

obtained by setting = €,(2). Wethus confirm that for every (i) The other possibility refers to a specific initial choice
root of this equation we are able to construct extended eigerof the site energies. By looking at the recursion relati(8)s
states consistent with the ScHioger equation. We expect
that, reasoning in the same manner as in the above cases, v~
are likely to uncover a whole set of eigenvalues by solving
the equatiorE=e,(n) with n=1,2,3 ..., in anarbitrarily
large lattice for which the wave function will be “extended”
in the sense described earlier.

Before ending this section, we point out two other possi-
bilities of getting “extended” type of states:

(i) We consider the third generation lattice, wheyg,,
=4. It is quite obvious that by choosirig= €, (which hap-
pens to be equal te, in the bare length scale in our mogel
we can have a consistent solution of the Sdimger equa-
tion on this lattice in which the amplitude of the wave func-
tion is zero on all vertices witk=2 and alternates between
+1 on the vertices witlz=4. This is, of course, one of the
possible configurations. But we can carry on the process o
construction for other eigenvalues by setttg €,(n) for an
N=n+ 3 generation lattice, and by demanding thlatvan-
ishes identically on allz=2 vertices on then step-
renormalized version of the same lattice. In Fig. 5, we ex- FIG. 5. Amplitudes of a wave function fdE=e,(1) on anN
hibit the distribution of amplitudes fdE=¢€,(1) on a fourth =4 lattice. All ¢;'s have been set equal to zero andl. ;’s take
generation lattice. Distribution for higher generations andon values—22, —1, 0, 1, and 2/2 on different sitegi).
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&(n)

=—Pyy, (7)

and

&M

FIG. 6. Reduction of am times renormalized lattice to an ef- Poo=—=. (8
fective dimer. The leads are shown as dashed lines.

Here, k= cos Y (E—€y)/2to], where, e, andt, refer to the
on-site potential and the hopping integral, respectively, of
the ordered lead.

In order to understand the behavior ®fE) for large
systems at any particular energy, we must analyze how the
matrix elementsP;; behave for large number of RG itera-
tions, n. As a lattice of any generation should finally be
aduced to a basiti=2 rhombus having only,(n) and
g(n) (see Fig. 5, we must analyze the flow patternsegfand

X . . . .. tunder successive RSRG iterations. The evolution of these
We will now describe how to investigate the transmission

characteristics of a diamond hierarchical lattice. We will em-tWO parameters ultimately controlsandt, and hence the
phasize on the analytical treatment of the recursion relation@atrix elements>;; . Let us discuss it for two specific cases.
and will discuss the behavior of the transmission coefficient! "roughout the analysis, we will set al}=0 andt=1.

T(E) for the two cases witlE=¢e, and E=¢,(1), respec-

tively, for which the transmission coefficient displays totally Case(i) E=e€,=0

opposite characteristicsT(E) for the other energie$E From direct calculations we find that Bs—0, the leading
= €,(n)] can be obtained by following the method adoptedpenaviors(in E) of t and e, are given by,

for these cases.

and (4) for the on-site term and hopping integral, respec-
tively, we find that if we start with a model whews,= ¢,
—zt, then forE= e, + 2t, each on-site term and the hopping
integral exhibit a fixed point behavior. It implies that the
nearest neighbor hopping integral does not flow to zero un
der iteration and we have a nonvanishing “connection” be-
tween nearest-neighboring sites at all length scales. This is
clear signature of the corresponding eigenstate bein
extended?

2t2
t(n)~— €)
Ill. ANALYSIS OF THE TRANSMISSION COEFFICIENT E
For calculating the transmission coefficieRtg), we at- ex(N)~ —4t? (10)
tach two semi-infinite perfectly ordered leads to the two 2 E

“diametrically” opposite vertices having the maximum co-
ordination number in any generatidh The original lattice is
then renormalizedi(=N—2) times, so that we are left with
a basicN=2 rhombus with four vertices each having an
effective site energy,(n) and the nearest-neighbor hopping
integral t(n) [Fig. 6]. This elementary rhombus is now
folded into a “dimer” with site energy and nearest-neighbor
hopping integral, respectively, given by

forn=2, 3, 4, and 5. We thus assume these forms to be true
for any arbitrary value of, viz., n=m. Then proceeding
according to the standard method of induction, we can prove,
using the recursion relatior8) and(4) that Eqs.(9) and(10)
indeed hold good fon=m+ 1 as well. Therefore, we accept
the above forms as the leading terms in the expressions for
t(n) and e»(n) for E—0 and for any arbitrary value af

with n=2. It is now easy to work out an expression f& (

- 2t2(n) —'¢)/t, which is given, to the leading order B by
e=¢€5(N)+ —[E— (]
2 B B (12)
and 1 212
~ 2t2(n) A direct subtitution of the above result in the expressions of
t= [E— 62(n)] ' P” shows that,P11= P22—>0 and P12: - P21: —1 asE

—0. The expression fof (E=0) now becomes
Following the standard proceddrét is then easy to show

4 sirtk €
that T(E=0)= ———=5si? k=1——02. (12
[PZl_ Plilz 4t0
4 sirfk
T(E)= If we selectey=0, thenT(E=0) is unity, and any arbi-

_ + _ 2+ 4 2 i !
[P21= Pizt (P2z~ P1y)COSKI™ (Purt P2o) szl((5) trarily large diamond hierarchical lattice becomes completely

transparent to an incoming electron wkh=0.
where the elements of the matiixare

=

Case(ii) E=ey(1)=2

_ (6) The central idea of the analysis for cdgecan now easily

P =
" to be extended to study the general situation, whetree,(n).
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The results, however, turn out to be totally different, as we It is quite obvious that, depending on the value of the

have checked numerically by solving the equati@n
—€,(n)=0 for several values af. We present below ana-
lytical results forE=e€,(1)=2 for stepsn=2. Once again,
we observe the behavior bBnde, arounde=2 for succes-
sive iterations. We seE=2+4, & being infinitesimally
small, and find, by direct calculation that, foe2

ez(n)=%+fn+0(5) (13

()= 3+, +O(5) (14

up to leading order ins, wheref,, andg, are, respectively,
given by

f_22n 2n 11
"9 "3 18

and
220-2 n 35

N9 T3 e

The above forms set in, as in casg after the first iteration,
and hold perfectly well fon=2, 3, 4, and 5. We now make
use of the recursion relatiot3) and(4) to find that the result
is true for (n+1)th stage as well. Thus, we take E@$3)
and (14) to represent the general behavior ofe,(n) and

t(n) for any n=2. The leadings behavior ofe andt are
obtained to be,

and

respectively, which lead to the equation

E-¢ 22 4
T 3 3 19

energy, one has to select the on-site term and the hopping
integral for the lead suitably, so that the energy does not fall
beyond the “band” of the ordered lead or even coincide with
the “band edge.” In both cases the use of the expres&pn

will not be meaningful.

We have also numerically calculated(E) for E
=€,5(2), E=€5(3), andE=¢4(1) for lattices starting from
N=3 up toN=6. We observe a gradual attenuation in the
value of the transmission coefficient according to our expec-
tation. The present results thus provide an example of what
we may call an “atypical” extended stateshere, though the
wave function displays nonzero amplitudes even at the far-
thest portions of an arbitrarily large lattice, the end-to-end
transmission decays with increasing lattice size. We expect
similar behavior of T(E) for other casegwith E=¢e,,(1)]
also.

The fixed point behavior of T(E)

Before ending this section, we discuss the case where we
have a fixed-point behavior of the Hamiltonian parameters.
For this, we take a model witk,,=¢e,—zt and setE=¢,

+ 2t. All parameters then remain unaltered under RSRG and
we find that fore,=0 andt=1, the numerical value of the
transmission coefficient is given by,

4(t5-1)
tg

T(to)= (16)

where we have set the site energy of the legdequal to
zero. Naturally, we have to choose any suitable valug for
so that the above energy remains within the “band” of the
ordered lead. The above expression Toremains fixed for
arbitrarily large versions of a diamond lattice. The wave
function is definitely extended asdoes not flow to zero
under RSRG.

IV. CONCLUSION

We have presented a hierarchical lattice model where the
coordination number of the lattice points range from 2 to
2N~1 depending on the generation ind&x In such a lattice
there exist “extended” type of electronic states some of

However, it should be noted that in order that the presenwhich have been identified and the corresponding eigenval-

analysis is valid, we must have a fini@though largenum-
ber of iterations such thatf,, andg, are also finite quanti-
ties and are small compared toslas 6—0. The matrix
elements now reatheglecting terms of the order @& and
taking the limit 5—0), P;=—2(4"-4)/3, and P,,=0,
P.,=—P,;=—1. For large(but finite) values ofn one can
now show, using Eq(5) that

T(E=2)~274,

ues have been calculated using renormalization-group ideas.
We also presented an exact analysis of the end-to-end trans-
mission coefficient to reveal that the lattice, irrespective of
its size, becomes completely transparent to an electron with
energyE=0, while for other energies the transmission coef-
ficient has a scaling behavior. We obtained an exact form of
the scaling for a specific energy, and the other forms can be
obtained using the same methodology, though we did not
present the other analytical results here.
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