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Anomalous transmission in a hierarchical lattice
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We present an analytical method of studying ‘‘extended’’ electronic eigenstates of a diamond hierarchical
lattice, which may be taken as the simplest of the hierarchical models recently proposed for stretched polymers.
We use intuitive arguments and a renormalization-group method to determine the distribution of amplitudes of
the wave functions corresponding to some of these ‘‘extended’’ eigenstates. An exact analysis of the end-to-
end transmission property of arbitrarily large finite lattices reveals an anomalous behavior. It is seen that while
for a special value of the energy the lattice, however large, becomes completely transparent to an incoming
electron, for the other energy eigenvalues the transmission decreases with system size. For one such energy
eigenvalue we analytically obtain the precise scaling form of the transmission coefficient. The same method
can easily be adopted for other energies.
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I. INTRODUCTION

Hierarchical lattice models have played an important p
in understanding the statistical mechanics of phase tra
tions. Such lattices differ, both in topology and in geomet
from the Bravais lattices.1 One major feature of such struc
tures is their scale invariance, which enables an exact im
mentation of real-space renormalization-group~RSRG!
techniques.1–4 Apart from statistical mechanics, studies
the electronic spectrum of such lattices have also reve
striking properties, not shared by common crystalli
structures.5–7 For example, Domanyet al.5 solved the Schro¨-
dinger equation on a variety of hierarchical lattices using
exact recursive scheme. In the thermodynamic limit, the
ergy levels were found to be discrete, very closely spa
and highly degenerate.5 The electron localization problem
however, is not easy to understand on hierarchical latti
The fluctuating local environment around each lattice po
is likely to localize the electronic wave functions in mo
situations, though for some hierarchical or fractal structu
like the Seirpinski gasket and the Vicsek fractal, ‘‘extende
electronic states have been reported.8,9 This aspect makes th
study of electronic properties of hierarchical lattices intere
ing. Normally, the ‘‘extended’’ character of electronic wav
function is associated with translational invariance of the
derlying lattice and, a hierarchical lattice~like the present
one! does not have any translational periodicity by virtue
its construction~see Fig. 1!. However, we are familiar with
several one dimensional examples, viz. the one-dimensi
random dimer10 or quasiperiodic lattice models11 where one
comes across situations in which local positional correlat
between constituent ‘‘atoms’’ gives rise to a finite10 or
infinite11 number of ‘‘extended’’ electronic states eve
though these lattices are not periodic. In hierarchical lattic
such local positional correlation is not always obvious.
PRB 610163-1829/2000/61~11!/7395~7!/$15.00
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the other hand, the topology of the lattice in certain ear
cases has been shown to play an important role in sustai
‘‘extended’’ electronic wave functions.8,9 Such states some
times exhibit anomalous transport properties, in the se
that though the amplitude of the wave function remains n
zero even at distant parts of arbitrarily large lattices, the e
to-end transmission of any incident wave packet sometim
displays a power-law decay.9

Above exact results are available for hierarchical mod
in which there is a finite variety of the nearest-neighbor e
vironment around a lattice site~strictly speaking, in any hi-
erarchical lattice all sites are inequivalent if one looks b
yond the nearest neighbors!. The situation may thus becom
quite challenging if one tries to explore a case where
range of the coordination number of the lattice points
creases with the generation of bigger and bigger lattices.
such example is the well-known diamond hierarchic
lattice1 in which the coordination number of the vertice
range fromz52 to zmax52N21 for anNth generation lattice.
The thermodynamics of spin models on a diamond lattice
been studied exactly by RSRG methods.1 But its electronic
properties have not been really studied in detail, a par
which we intend to address in the present communicat
Our interest in the diamond lattice is twofold. First, we wi
to investigate analytically, if there exists any ‘‘extended

FIG. 1. First three stages~i.e., N51,2,3) of the construction of
a diamond hierarchical lattice.
7395 ©2000 The American Physical Society
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7396 PRB 61CHAKRABORTI, BHATTACHARYYA, AND CHAKRABARTI
electronic eigenstate though there is no translational per
icity in this lattice. Moreover, if such states do exist then,
our mind, it would be interesting to study their amplitud
profiles and also to study the transmission properties of
bitrarily large finite lattices at those special values of t
electron-energy for which the distribution of the amplitud
is non-trivial. Second, we note that similar hierarchical str
tures have recently been proposed by Samukhinet al.12 as a
possible basic structure of stretched polymers. In stretc
polyacetylene the polymer network is constructed by coup
polymer chains oriented along some direction.12 The (m,n)
hierarchical pseudolattice that serves as the model for s
polymers may be composed, according to Ref. 12, by tak
n bonds forming a chain of (n11) atoms and then joiningm
such chains in parallel. It is then quite obvious that our d
mond hierarchical structure is a (2,2) model lattice in t
group ~see Fig. 1!. So, an analytical approach to study t
transport properties of a diamond structure seems to b
interesting step towards the understanding of the prope
of the general (m,n) structure.

Recently, Zhuet al.13 numerically calculated the trans
mission coefficient of the (m,n) polyacetylene model as
function of electron energy for different (m,n) values and at
different stage numbers. Interestingly, they found, amo
very fragmented patterns, many energy values for which
transmission coefficient turns out to be unity~or very nearly
so! for up to fifth-generation structures. Also, they have
ported ~numerically obtained! scaling behavior of conduc
tance for the (m,n) structures, though its precise form is n
known. In view of this, we consider the simplest (2,2) ve
sion, i.e., the diamond lattice and make an analytical atte
to see if such a structure ever becomes completely or
tially transparent to an incoming electron. Most interesting
we find that it is possible to get a special energy eigenva
for which arbitrarily large-sized diamond hierarchical lattic
will have transmission coefficient equal tounity. We work
out a scheme based on an intuitive approach to determine
distribution of the amplitudes of the wave function (c i) for
this special energy on a small sized lattice and then use
RSRG approach to work out the distribution in lattices
higher generations. The central idea is not too difficult
extend to the general (m,n) case. Using the same RSR
formalism we evaluate a whole hierarchy of energy eig
values for which we again have nontrivial distribution of t
amplitudesc i over the entire lattice. The end-to-end tran
mission across lattices of gradually increasing size is n
found to decay for this second group of eigenvalues.
explicitly calculate the scaling behavior for one such ca
and obtain a precise form of the power law followed by t
transmission coefficient. Scaling forms for other energies
be obtained following the scheme prescribed by us. In S
II, we describe our model and the method, in Sec. III t
transmission coefficient is discussed, and we draw con
sions in Sec. IV.

II. THE MODEL AND THE METHOD

In Fig. 1, we show the first three stages of construction
the diamond lattice following Berker and Ostlund.2 A de-
tailed discussion on the construction and topology of latti
belonging to this class is given in Ref. 1. The atomic sites
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at every vertex of the lattice. To study the electronic prop
ties of the diamond lattice, we work with the tight-bindin
Hamiltonian with nearest-neighbor approximation:

H5(
i

e i u i &^ i u1(̂
i j &

t i j u i &^ j u, ~1!

where e i is the on-site potential andt i j is the nearest-
neighbor~NN! hopping integral.

As we are primarily interested in the topological aspect
the system we set identical values to all the site energies,
e i5e and all the hopping integrals are taken to be the sa
i.e., t i j 5t ~chosen to be the scale of energy!. However, to
facilitate the renormalization group calculations we sh
designate the site energy of a site with coordination num
z, as ez . Therefore, in anNth generation latticee i ’s range
from e2 to ezmax

, wherezmax52N21.
Let us, first of all, try to give a simple intuitive picture o

how to construct a wave function that will have a nontriv
disribution of amplitude over the entire lattice, irrespecti
of its size. We work with the difference equation version
the Schro¨dinger equation,

~E2e i !c i5t (
j P(NN o f i)

c j , ~2!

where,c j is the amplitude of the wave function at thej th
site. We shall be looking for energy eigenvalues that so
the above equation consistently all over the lattice and
yield a nontrivial distribution ofc j ’s. We begin withN53,
i.e., where we have at least one class of sites withz.2 ~here,
zmax is 4!. By inspection we can see that if we chooseE
5e2, then this equation satisfies the Schro¨dinger equation
consistently at all sites if we demand that the amplitude
wave function vanishes at sites with coordination num
four. Extending this idea, we find that indeed we can sati
Schrödinger equation locally at all sites in any arbitrari
large lattice provided we set the amplitudec i at a site with
coordination numberz, equal to zero for allz.2. That is, in
this scheme, the electron cannot ‘‘feel’’ the presence of
sites withz.2. This helps in attaining an ‘‘extended’’ char
acter of the wave function. It may be mentioned here tha
similar technique was used earlier in the case of a Vic
fractal.9 Here, it is to be noted that the solutions of the Sch¨-
dinger equation on such a lattice will be highly degener
and we are exhibiting one such case only. In Figs. 2~a! and
2~b!, the amplitude distributions forE5e250 are given on a
lattice with N53 and N54, respectively. The pattern o
distribution of the amplitudes for theN54 case has been
obtained by joining the extremetiesA andB @Fig. 2~a!# of the
basic N53 plaquette~which now becomes the building
block for the next generation! side by side such that th
vertex B of one plaquette falls on the vertexA of the next
@Fig. 2~b!#. Following this strategy we can use theN54
plaquette as the basic unit and determine the amplitu
distribution on an N55 lattice by joining the N54
plaquettes at the vertices havingz58, where the amplitude
of the wave function is zero. The method can be exten
easily to construct the distribution pattern for higher gene
tions.
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PRB 61 7397ANOMALOUS TRANSMISSION IN A HIERARCHICAL LATTICE
The above idea can now be coupled to an RSRG sch
to extract other possible energy eigenvalues. Starting f
any arbitrarily large finite version of the hierarchical di
mond lattice, we can renormalize the latticen times. The
recursion relations for the site energies and hopping inte
are, respectively, given by

ez~n!5e2z~n21!1
2zt2~n21!

@E2e2~n21!#
~3!

and

t~n!5
2t2~n21!

@E2e2~n21!#
. ~4!

Here,ez(n) and t(n) denote, respectively, the values of th
on-site potential and the hopping integral, at thenth stage of
renormalization.

Now, suppose we start with anNth generation lattice. We
renormalize this latticen5N23 times and bring it down to
an ‘‘effectively’’ third generation lattice wherez52 and 4.
The site energies and the hopping integral for this renorm
ized version are calculated using Eqs.~3! and ~4!. We then
apply the earlier trick on this renormalized lattice, i.e., w
make the amplitudesc i vanish at thez54 sites~on the re-
scaled version!. This happens forE5e2(n). This is a poly-

FIG. 2. Distribution of the amplitudes of an extended wa
function atE50 on ~a! anN53 lattice and~b! anN54 lattice. All
e i ’s have been set equal to zero andt51. c i ’s take on values
21, 0, and 1 on different sites~i!.
e
m

al

l-

nomial equation inE. Though, it is difficult to provide a
complete proof, we have performed explicit calculations
to N55 and forn51 and 2. In each case it turns out that t
solutions of the equationE5e2(n) satisfy the Schro¨dinger
equation all over the lattice with a nontrivial distribution o
the amplitudes of the wave function. Therefore, it is tempt
to make the conjecture that the real roots of the equatioE
5e2(n) will correspond to the ‘‘extended’’ eigenstates in th
general case, if we follow the same prescription. Wh
mapped onto the original lattice the wave function will va
ish at sites with some value ofz onwards and will remain
finite at all other lattice points with lower values ofz. Let us
clarify this idea by discussing two specific situations. Fir
we chooseE5e2(1). Now, we should have at least anN
54 lattice as our starting structure, wherezmax58. We then
renormalize it once to cast it into an effectiveN53-stage
lattice with zmax54. We find that the solutions of the equa
tion E5e2(1) areE562, with all ez50 initially and t51.
Each of these energy values consistently satisfies the Sc¨-
dinger equation everywhere on the renormalized lattice p
vided we fix c i50 at thez54 sites on this renormalized
structure. When mapped onto the originalN54-stage hier-
archical structure, we see that the amplitude of the w
function vanishes only at the vertex with the highest coor
nation number, i.e., 8 and it is nonzero at all other poin
The rule for constructing such a distribution may be form
lated as follows. We consider two plaquettes, type I and t
II, each being anN53 diamond lattice. In Fig. 3~a!, the
plaquette I is shown. In type II, each nonzero amplitude
the wave function is of opposite sign to that at the cor
sponding vertex in type I. In both of them, the Schro¨dinger
equation is satisfied at each vertex forE52. These two
plaquettes, I and II, are then joined end to end in an altern
fashion such that the vertices withc i50 fall on each other
@Fig. 3~b!#. In this way, theN54 structure is built, and by
selecting theN54 structure as the basic unit we can co
struct the pattern for anN55 lattice by joining them suitably
at the extreme points~with c i50). The scheme can go o
for other higher order lattices. It is to be appreciated that,
higher generationsc i will remain zero at all vertices withz
58,16,32, . . . . The even number of the nearest-neighbo
helps maintaining the value ofc i equal to zero at these site
For the other sites withz,4 at any generation, the Schro¨-
dinger equation is locally satisfied everywhere, once it
satisfied at a lower generation.

Second, we considerE5e2(2). Here, we need to star
from an N55 structure. We map this lattice onto anN53
version with renormalized parameters and forcec i50, as
before, at the sites withz54 on this renormalized lattice
The effectiveN53 lattice with the distribution of the ampli
tudes is presented in Fig. 4~a!. When unfolded to retrieve the
original N55 lattice, we now find that the amplitude is ze
only at the vertices withz516, and three new amplitude
6a, 6b, and6c appear atz52 and 4 sites. One quarter o
the full N55 lattice is shown in Fig. 4~b! with the distribu-
tion of the valuesa, b, and c. The complementary portion
with 2a, 2b, and2c is not shown, but can easily be con
ceived of. In order to satisfy the Schro¨dinger equation con-
sistently at each vertex, we see thata, b, andc should take
values (E228)/8E, (E228)/8, andE/8, respectively, pro-
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7398 PRB 61CHAKRABORTI, BHATTACHARYYA, AND CHAKRABARTI
vided the energyE is a solution of the equationE4212E2

11650. This is precisely the polynomial equation that
obtained by settingE5e2(2). Wethus confirm that for every
root of this equation we are able to construct extended eig
states consistent with the Schro¨dinger equation. We expec
that, reasoning in the same manner as in the above case
are likely to uncover a whole set of eigenvalues by solv
the equationE5e2(n) with n51,2,3, . . . , in anarbitrarily
large lattice for which the wave function will be ‘‘extended
in the sense described earlier.

Before ending this section, we point out two other pos
bilities of getting ‘‘extended’’ type of states:

~i! We consider the third generation lattice, wherezmax
54. It is quite obvious that by choosingE5e4 ~which hap-
pens to be equal toe2 in the bare length scale in our mode!,
we can have a consistent solution of the Schro¨dinger equa-
tion on this lattice in which the amplitude of the wave fun
tion is zero on all vertices withz52 and alternates betwee
61 on the vertices withz54. This is, of course, one of th
possible configurations. But we can carry on the proces
construction for other eigenvalues by settingE5e4(n) for an
N5n13 generation lattice, and by demanding thatc i van-
ishes identically on allz52 vertices on then step-
renormalized version of the same lattice. In Fig. 5, we
hibit the distribution of amplitudes forE5e4(1) on a fourth
generation lattice. Distribution for higher generations a

FIG. 3. Amplitudes of a wave function on~a! the basic plaquette
I, which acts as a building block of anN54 lattice and~b! an N
54 lattice forE5e2(1). All e i ’s have been set equal to zero an
t51. c i ’s take on values21, 21/2, 0, 1/2, and 1 on different site
~i!.
n-

we
g
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d

other eigenvalues can be obtained by extending the ea
ideas. Similar results can be obtained for the general c
with E5e2z(n).

~ii ! The other possibility refers to a specific initial choic
of the site energies. By looking at the recursion relations~3!

FIG. 4. Amplitude distribution on~a! an effectively N53
plaquette obtained by renormalizing anN55 lattice twice and~b!
one quarter of the originalN55 version for E5e2(2). Dashed
lines at the two extreme vertices indicate the presence of com
mentary plaquettes. Alle i ’s have been set equal to zero andt51.
The values ofa, b, andc are given in the text.

FIG. 5. Amplitudes of a wave function forE5e4(1) on anN
54 lattice. All e i ’s have been set equal to zero andt51. c i ’s take
on values22A2, 21, 0, 1, and 2A2 on different sites~i!.
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PRB 61 7399ANOMALOUS TRANSMISSION IN A HIERARCHICAL LATTICE
and ~4! for the on-site term and hopping integral, respe
tively, we find that if we start with a model wheree2z5ez
2zt, then forE5e212t, each on-site term and the hoppin
integral exhibit a fixed point behavior. It implies that th
nearest neighbor hopping integral does not flow to zero
der iteration and we have a nonvanishing ‘‘connection’’ b
tween nearest-neighboring sites at all length scales. This
clear signature of the corresponding eigenstate be
extended.14

We will now describe how to investigate the transmiss
characteristics of a diamond hierarchical lattice. We will e
phasize on the analytical treatment of the recursion relat
and will discuss the behavior of the transmission coeffici
T(E) for the two cases withE5e2 and E5e2(1), respec-
tively, for which the transmission coefficient displays tota
opposite characteristics.T(E) for the other energies@E
5e2z(n)# can be obtained by following the method adopt
for these cases.

III. ANALYSIS OF THE TRANSMISSION COEFFICIENT

For calculating the transmission coefficientT(E), we at-
tach two semi-infinite perfectly ordered leads to the t
‘‘diametrically’’ opposite vertices having the maximum co
ordination number in any generationN. The original lattice is
then renormalizedn(5N22) times, so that we are left with
a basicN52 rhombus with four vertices each having a
effective site energye2(n) and the nearest-neighbor hoppin
integral t(n) @Fig. 6#. This elementary rhombus is now
folded into a ‘‘dimer’’ with site energy and nearest-neighb
hopping integral, respectively, given by

ẽ5e2~n!1
2t2~n!

@E2e2~n!#

and

t̃ 5
2t2~n!

@E2e2~n!#
.

Following the standard procedure15 it is then easy to show
that

T~E!5
4 sin2k

@P212P121~P222P11!cosk#21~P111P22!
2 sin2k

,

~5!

where the elements of the matrixP are

P115F S E2 ẽ

t̃
D 2

21G t̃

t0
, ~6!

FIG. 6. Reduction of ann times renormalized lattice to an e
fective dimer. The leads are shown as dashed lines.
-

-
-
a
g

-
s
t

P1252S E2 ẽ

t̃
D 52P21, ~7!

and

P2252
t0

t̃
. ~8!

Here,k5cos21@(E2e0)/2t0#, where,e0 andt0 refer to the
on-site potential and the hopping integral, respectively,
the ordered lead.

In order to understand the behavior ofT(E) for large
systems at any particular energy, we must analyze how
matrix elementsPi j behave for large number of RG itera
tions, n. As a lattice of any generation should finally b
reduced to a basicN52 rhombus having onlye2(n) and
t(n) ~see Fig. 5!, we must analyze the flow patterns ofe2 and
t under successive RSRG iterations. The evolution of th
two parameters ultimately controlsẽ and t̃ , and hence the
matrix elementsPi j . Let us discuss it for two specific case
Throughout the analysis, we will set allez50 andt51.

Case„ i… EÄe2Ä0

From direct calculations we find that asE→0, the leading
behaviors~in E) of t ande2 are given by,

t~n!;
2t2

E
~9!

e2~n!;
24t2

E
~10!

for n52, 3, 4, and 5. We thus assume these forms to be
for any arbitrary value ofn, viz., n5m. Then proceeding
according to the standard method of induction, we can pro
using the recursion relations~3! and~4! that Eqs.~9! and~10!
indeed hold good forn5m11 as well. Therefore, we accep
the above forms as the leading terms in the expressions
t(n) and e2(n) for E→0 and for any arbitrary value ofn
with n>2. It is now easy to work out an expression for (E

2 ẽ)/ t̃ , which is given, to the leading order inE, by

E2 ẽ

t̃
5

E2

2t2
11. ~11!

A direct subtitution of the above result in the expressions
Pi j shows that,P115P22→0 and P1252P21521 as E
→0. The expression forT(E50) now becomes

T~E50!5
4 sin2k

@P212P12#
2

5sin2 k512
e0

2

4t0
2
. ~12!

If we selecte050, thenT(E50) is unity, and any arbi-
trarily large diamond hierarchical lattice becomes complet
transparent to an incoming electron withE50.

Case„ ii … EÄe2„1…Ä2

The central idea of the analysis for case~i! can now easily
be extended to study the general situation, whereE5e2(n).
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The results, however, turn out to be totally different, as
have checked numerically by solving the equationE
2e2(n)50 for several values ofn. We present below ana
lytical results forE5e2(1)52 for stepsn>2. Once again,
we observe the behavior oft ande2 aroundE52 for succes-
sive iterations. We setE521d, d being infinitesimally
small, and find, by direct calculation that, forn>2

e2~n!5
2

d
1 f n1O~d! ~13!

t~n!52
1

d
1gn1O~d! ~14!

up to leading order ind, where f n andgn are, respectively,
given by

f n5
22n

9
1

2n

3
2

11

18

and

gn5
22n22

9
2

n

3
1

35

36
.

The above forms set in, as in case~i!, after the first iteration,
and hold perfectly well forn52, 3, 4, and 5. We now mak
use of the recursion relations~3! and~4! to find that the result
is true for (n11)th stage as well. Thus, we take Eqs.~13!
and ~14! to represent the generaln behavior ofe2(n) and
t(n) for any n>2. The leadingd behavior ofẽ and t̃ are
obtained to be,

ẽ5
1

d
1

f n11

2

and

t̃ 52
1

d
1gn11

respectively, which lead to the equation

E2 ẽ

t̃
5

22n

3
2

4

3
. ~15!

However, it should be noted that in order that the pres
analysis is valid, we must have a finite~although large! num-
ber of iterationsn such thatf n andgn are also finite quanti-
ties and are small compared to 1/d as d→0. The matrix
elements now read~neglecting terms of the order ofd2 and
taking the limit d→0), P11522(4n24)/3, and P2250,
P1252P21521. For large~but finite! values ofn one can
now show, using Eq.~5! that

Tn~E52!;224n.
e

nt

It is quite obvious that, depending on the value of th
energy, one has to select the on-site term and the hopp
integral for the lead suitably, so that the energy does not
beyond the ‘‘band’’ of the ordered lead or even coincide wi
the ‘‘band edge.’’ In both cases the use of the expression~5!
will not be meaningful.

We have also numerically calculatedT(E) for E
5e2(2), E5e2(3), andE5e4(1) for lattices starting from
N53 up to N56. We observe a gradual attenuation in th
value of the transmission coefficient according to our expe
tation. The present results thus provide an example of w
we may call an ‘‘atypical’’ extended state9 where, though the
wave function displays nonzero amplitudes even at the f
thest portions of an arbitrarily large lattice, the end-to-e
transmission decays with increasing lattice size. We exp
similar behavior ofT(E) for other cases@with E5e2z(1)#
also.

The fixed point behavior of T„E…

Before ending this section, we discuss the case where
have a fixed-point behavior of the Hamiltonian paramete
For this, we take a model withe2z5ez2zt and setE5e2
12t. All parameters then remain unaltered under RSRG a
we find that fore250 andt51, the numerical value of the
transmission coefficient is given by,

T~ t0!5
4~ t0

221!

t0
4

, ~16!

where we have set the site energy of the leade0, equal to
zero. Naturally, we have to choose any suitable value fort0
so that the above energy remains within the ‘‘band’’ of th
ordered lead. The above expression forT remains fixed for
arbitrarily large versions of a diamond lattice. The wav
function is definitely extended ast does not flow to zero
under RSRG.

IV. CONCLUSION

We have presented a hierarchical lattice model where
coordination number of the lattice points range from 2
2N21 depending on the generation indexN. In such a lattice
there exist ‘‘extended’’ type of electronic states some
which have been identified and the corresponding eigenv
ues have been calculated using renormalization-group id
We also presented an exact analysis of the end-to-end tr
mission coefficient to reveal that the lattice, irrespective
its size, becomes completely transparent to an electron w
energyE50, while for other energies the transmission coe
ficient has a scaling behavior. We obtained an exact form
the scaling for a specific energy, and the other forms can
obtained using the same methodology, though we did
present the other analytical results here.
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