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Threshold-induced phase transition in kinetic exchange models
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We study an ideal-gas-like model where the particles exchange energy stochastically, through energy-
conserving scattering processes, which take place if and only if at least one of the two particles has energy
below a certain energy threshold (interactions are initiated by such low-energy particles). This model has an
intriguing phase transition in the sense that there is a critical value of the energy threshold below which the
number of particles in the steady state goes to zero, and above which the average number of particles in the
steady state is nonzero. This phase transition is associated with standard features like “critical slowing down”
and nontrivial values of some critical exponents characterizing the variation of thermodynamic quantities near
the threshold energy. The features are exhibited not only in the mean-field version but also in the lattice versions.
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I. INTRODUCTION

The kinetic theory of gases played a pivotal role in the
development of statistical mechanics, which is more than
a century old. This theory describes a gas as a collection
of a large number of particles (atoms or molecules) which
are constantly in random motion, and these rapidly moving
particles constantly collide with each other and exchange
energy. In the ideal gas, this energy is only kinetic. Recently
physicists have been studying two-body kinetic exchange
models in socioeconomic contexts in the rapidly growing
interdisciplinary fields of sociophysics [1] and econophysics
[2]. The two-body exchange dynamics has been developed in
the context of modeling income, money, or wealth distributions
in a society [3-10] and modeling opinion formation in the
society [11-14], analogous to the kinetic theory model of
ideal gases. These studies have given deeper insights into
and different perspectives on the simple physics of two-body
kinetic exchange dynamics. In this context of wealth exchange
processes, Iglesias and co-workers [15,16] considered a model
for the economy where the poorest in the society (atom with
least energy in the gas) at any stage takes the initiative to go for
a trade (random wealth or energy exchange) with anyone else.
Interestingly, in the steady state, one obtained a self-organized
poverty line, below which no one could be found and above
which a standard exponential decay of the distribution (Gibbs)
was obtained.

Here, we study a model where N particles, interact
among themselves through two-body energy- (x-) conserving
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stochastic scatterings with at least one of the particles having
energy below a threshold 6 (poverty line in the equivalent
economic model). The states of particles are characterized by
the energy {x;}, i = 1,2,...,N,suchthatx; > 0, V i and the
total energy E = ), x; is conserved (= N here, such that the
average energy of the system £ = E/N = 1). The evolution of
the system is carried out according to the following dynamics:

x = e(x” +x)),
, i (1)
x; = (I —e)x" +x;),

where x~ < 6 (threshold energy or “ poverty line”) and
€ (0 < e <1) is a stochastic variable, changing with time
(scattering). It can be seen that the quantity x is conserved
during each collision: x;~’" + x/i = x;~ + x;. The question of
interest is “What is the steady state distribution p(x) of energy
x in such systems?”

In the standard case, when the threshold energy goes
to infinity (f — o0), we know that the steady state energy
distribution will be the exponential Gibbs distribution [ p(x) ~
exp (—x)] [3]. However, when a finite threshold energy is
introduced (6 > 0), several new and intriguing features appear.
These features are exhibited not only in the mean-field version
(with infinite-range interaction, pairs of particles randomly
chosen from N particles) but also in the lattice versions
(with nearest neighbor interactions, i.e., exchanges between
the nearest neighbors on lattice sites).

II. MODEL SIMULATIONS AND RESULTS
A. The model

We simulate a system of N particles (agents). At any
time 7, we select randomly a particle i. If the energy of
the particle is below a prescribed threshold energy 6, then
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FIG. 1. (Color online) Energy distribution p(x) in the steady state
(t > 1), for different 6 values. The inset shows a semi-log plot of the
energy distribution. The tail of the distribution is Gibbs-like (N =
10°; mean-field model with average taken over many independent
initial conditions).

it collides with any other random particle j (in the mean-field
model) which can have any energy whatsoever, and the
two particles will exchange energy according to the Gibbs-
Boltzmann dynamics of Eq. (1). After each such successful
collision, the time is incremented by unity. The dynamics will
continue for an indefinite period, unless there is no particle
left below the threshold energy, in which case the dynamics
will freeze. If the dynamics gets frozen (when x; > 6 for all i),
we employ a “mild” perturbation such that a randomly chosen
particle will be dropped to the lower level (< 6) by giving up
its energy to anyone else (to ensure total energy conservation).
It can be shown that the addition of this perturbation does
not alter the relevant quantities for a thermodynamically
large system and simply ensures ergodicity in the system.
After sufficiently large time ¢ > 7, a steady state is reached
when the energy distribution p(x) (and also other average
quantities) do not change with time. We start with different
initial random configurations, where the states of particles
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FIG. 2. (Color online) Simulation results for the variation of O,
the average number of particles below the threshold energy 6 in the
steady state (¢ > 7), against threshold energy 6. Inset: (a) Result
O — 0 for # =059 (<6, as N — oo; (b) scaling fit (6 — 6,)*
with 8 ~ 0.97. (N = 10°; mean-field model with average taken over
many independent initial conditions.)
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FIG. 3. (Color online) Variations of O versus time ¢, shown for
different 6 values. At the critical value 6., the order parameter follows
a power law decay with exponent § ~ 0.93 (shown by the solid
line). (N = 107; mean-field model with average taken over many
independent initial conditions.)

are characterized by the energies {x;}, i = 1,2, ...,N, which
are drawn randomly from a uniform distribution such that
x; >0,V i and the average energy E = ), x;/N is set to
unity. We find the system to be ergodic [the steady state
distribution p(x) is independent of the initial conditions {x;}],
and we take steady state averages over all such independent
initial conditions to evaluate the quantities of interest.

We study mainly three cases: (a) the mean-field (MF)
(or infinite-range) case where i and j in Eq. (1) can
represent any two particles or agents in the system; (b) the
one-dimensional case where j =i + 1 along a chain; and
(c) the two-dimensional (2D) case, where j =i £ § with
8 representing neighbors of i. In our studies we consider a
2D square lattice.

We observe that for finite values of the energy
threshold 6, the steady state energy distribution is no longer
the simple Gibbs-Boltzmann distribution. We also find that
0 [= foa p(x)dx], the average number of particles below the
threshold energy in the steady state, is zero for 6 values below
or at a critical threshold energy 6., and for 6 > 6., O is
nonzero. The steady state value of O, the average number
of particles below the threshold energy 6, is seen to act like
an “order parameter” of the system. We study the relaxation
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FIG. 4. (Color online) Variation of 7 versus 6. Inset: Scaling fit
7 ~ |6 — 6,|7%, with exponent z =~ 0.83 (mean-field case; N = 10°).

061130-2



THRESHOLD-INDUCED PHASE TRANSITION IN KINETIC . ..

0.16 .
044t oo, | / ] ] |
012 fooos | . . ]
004 | 4 4 "
0.1 ' - 8
0 A .
Q o.08 | 0 005 01 . ]
0-6, -
0.06 - 1
0.04 + . |
0.02 + - 1
O 1 - 1 1
0.55 0.6 0.65 0.7
0

FIG. 5. (Color online) Variation of steady state order parameter
O(0) against 6 for dynamics following Eq. (1) (denoted by red
squares) and Eq. (2) (denoted by green circles). Inset: O vs (0 — 6,)
for both cases. (N = 10°; mean-field case.)

dynamics in the system: the relaxation of O(t) to the steady
state value of O [= O(0) for t > 7(0), the “relaxation time”].
We find that t(0) grows as 6 approaches 6., and eventually
diverges at 6,. The details of the results are given below.

B. Results: Mean-field model

In the mean-field (long-range) model, we first look for any
particle (i) with energy x; < 6 and then this particle is allowed
to interact with any other particle (), following Eq. (1). This
continues until either the steady state or a frozen state with
x; > 0 for all i is reached. In the case of a frozen state, as
mentioned earlier, any one particle is picked up randomly and
it loses its energy to any other (randomly chosen) particle, and
goes below the threshold 6. This induces further dynamics.
Eventually a steady state is reached. We study this steady state
energy distribution p(x) (see Fig. 1), and the order parameter
0= foa p(x)dx (see Fig. 2), showing a “phase transition”
at 6, ~ 0.607 & 0.001. A power law fit O ~ (8 — 6.)? gives
B ~0.97+0.01.
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FIG. 6. (Color online) Variation of O, the average number of
particles below the threshold energy 6 in the steady state (r > 7),
against threshold energy 6, following dynamics of Eq. (1) for 1D
(N = 10%). Inset: Scaling fit (6 — 6,)# with B ~ 0.41.
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FIG. 7. (Color online) Relaxation time t as a funtion of 8. Clearly
T diverges as 6 — 6. Inset: Numerical fit to t ~ |§ — 6,.|7%, with
z~1.9.(N = 10% 1D case.)

We also studied the relaxation behavior of O. At6 = 6., the
O(t) variation fits well with #7%; § ~ 0.93 + 0.01 (see Fig. 3).
The relaxation time t is estimated numerically from the time
value at which O first touches the steady state value O(0)
within a preassigned error limit. We find diverging growth
of the relaxation time t near 6 = 0, (see Fig. 4), showing
“critical slowing down” at the critical value 6. The values of
the exponent z for the divergence in t ~ |6 — 6.|~¢ have been
estimated (for both 6 > 6, and 6 < 6,). For the mean-field
model, the fitting value for the exponent z >~ 0.83 £ 0.01.

We have also studied the universality of this behavior by
generalizing the dynamics in Eq. (1) to

</ <
X; = €1x; + éxxj,

, - (2)
x; = (I —e)x + (1 —e)x;,
where €; and ¢, are random stochastic variables within the
range [0,1]. The critical point 6, shifts to 6, >~ 0.69 (6, ~
0.61 for €; = €, = ¢). The transition behavior is seen to be
universal near the critical point 6., but the critical point depends
specifically on the model (see Fig. 5).

C. Results: One-dimensional model

In the one-dimensional lattice version, the particles are
arranged on a periodic chain. At any time 7, we randomly select
a lattice site i. If the energy of the corresponding particle is
below a prescribed threshold energy 0, then it collides with any

TABLE 1. Comparison of critical exponents of this model with
those of the Manna model [18].

This model Manna model
B 1D 0.41 +0.02 0.382 £ 0.019
2D 0.67 £ 0.01 0.639 £ 0.009

MF 0.97 £ 0.01 1
z 1D 1.9 + 0.05 1.876 £ 0.135
2D 1.2 £ 0.01 1.22 +0.029

MF 0.83 £+ 0.01 1
) 1D 0.19 + 0.01 0.141 £ 0.024
2D 0.43 +0.02 0.419 £0.015

MF 0.93 £+ 0.01 1
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FIG. 8. (Color online) Variation of O(¢) versus ¢ for different
0 values for 1D case (N = 10%).

one randomly chosen nearest neighbor j (=i &= 1) which can
have any energy whatsoever, and the two particles exchange
energy according to Eq. (1). After each such successful
collision, the time is incremented by unity. This process is
continued until steady state is reached. The steady state order
parameter O variations against theshold € is shown in Fig. 6,
with exponent 8 >~ 0.41 £ 0.02 and 6, ~ 0.810 £ 0.001. The
fitting value for exponent z turn out to be around 1.9 £ 0.05
(see Fig. 7). Also we find § ~ 0.19 +0.01 (see Fig. 8). It
may be noted that a related chain model with such an energy
cutoff for kinetics, where the effective temperature is varied,
has been studied [17]. Though the behavior is similar, the
effective critical behavior (exponent values) seems to be quite
different.

D. Results: Two-dimensional model

For the 2D lattice version, the particles are arranged on a
square lattice, and this time one of the four nearest neighbors of
i is chosen randomly as particle j. If the energy of the particle
is below a prescribed threshold energy 6, then it collides with
any one randomly chosen nearest neighbor j which can have
any energy whatsoever, and the two particles exchange energy
according to Eq. (1). After each such successful collision,

0.45

000000
o ]
035 0°° 1

03} o° «

0.25 0°° B

02F ©° R 4

o
.
0.15F 000 QS olf 1
o
0.1F o° ]
o

0.05 °

" h
0.65 0.7 0.75 0.8 0.85 0.9 0.95

FIG. 9. (Color online) Variation of O, the average number of
particles below the threshold energy 6 in the steady state (1 > 7),
against threshold energy 6, following dynamics of Eq. (1) for 2D
case. The simulation is done for lattice size 1000 x 1000. Inset:
Scaling fit (9 — 6,)? with 8 ~ 0.67.
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FIG. 10. (Color online) Relaxation time (7), showing divergence
as 6 approches 6. from both sides. Inset: Numerical fit to 7 ~
|60 —6.]7% for 6 <6, (z~1.2+£0.01). (Simulations for 100 x
100 system, 2D case.)

the time is incremented by unity. This process is continued
until steady state is reached. Variation of the steady state
order parameter O against theshold 6 is shown in Fig. 9, with
exponent 8 ~ 0.67 £ 0.01 and 6, ~ 0.675 % 0.005. Also, we
find z ~ 1.2 £ 0.01 (see Fig. 10) and § ~ 0.43 £0.02 (see
Fig. 11).

All these estimated values of the critical exponents S, z,
and § are summarized in Table I.

III. FINITE SIZE EFFECT

We have also studied the time variation of O at different
sizes (N) at 6,. Plots of O(t)t® as a function of t/N° for
different values of the system size N (at the critical point) are
expected to collapse on a single curve. However, as we have
used a special dynamics which never allows the system to fall
into the absorbing state, in this case the activity saturates at a
small steady value (see Fig. 12) instead of showing the finite
size cutoff.

To study finite size effects in the decay of activity at the
critical point, one has to remove the perturbation and allow
the system to be trapped in the absorbing states. Using this
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FIG. 11. (Color online) Variation of O(t) versus time ¢, shown
for different 6 values for the 2D case. At the critical value 6,, the
order parameter follows a power law decay with exponent § >~ 0.43.
The simulation is done for lattice size 500 x 500.
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FIG. 12. (Color online) Study of finite size effect: The variation of O(¢), versus ¢ at & = 6, for systems of different sizes N. The plots
with bare symbols correspond to the case when there is no absorbing state and those with symbols connected by solid lines correspond to the
presence of absorbing state. (a), (b), and (c) correspond to MF, 1D, and 2D, respectively. Inset: Ot? vs t/N° in the presence of an absorbing
state, for different system sizes N, showing collapse onto a single curve for § = 0.93, 0.19, and 0.43 and o = 0.53, 1.53, and 1.55 for MF,

1D, and 2D, respectively.

dynamics, we have studied the effects of finite system size.
Figure 12 shows the decay of O(z) with ¢ at the critical
point for MF, 1D, and 2D systems, respectively. The insets in
the corresponding figures show the data collapse. The fitting
values of the exponent o are o = 0.53 £ 0.02,1.53 £ 0.05,
and 1.55+£0.05 for MF, 1D, and 2D, respectively, with
6 values given in Table 1.

IV. SUMMARY AND DISCUSSION

Inspired by the success of the kinetic exchange models of
market dynamics (see, e.g., [2—4]) and the observation that
the poor or economically backward in the society take the
major initiative in the market dynamics (see, e.g., [15,16] and
also [19,20]), we consider an ideal-gas-like model of a gas (or
market) where at leat one of the particles (or agents) has energy
(money) x less than a threshold (poverty line) value 6 take the
initiative to scatter (trade) with any other particle (agent) in
the system, following energy- (money-) conserving random
processes [following Eq. (1)]. For & — oo, the model reduces
to the kinetic model of an ideal gas with Gibbs distribution.
The steady state is found to be ergodic (steady state results are
independent of initial conditions). The perturbation employed
in the frozen cases (x; > 6 for all i) also does not affect
significantly the thermodynamic quantities [e.g., the steady
state value of O for 6 < 6, goes to 0 with 1/N, as can be seen
from inset (a) of Fig. 2].

In general, we find that the steady state distribution p(x)
(see Fig. 1 for the mean field, where each particle can interact
irrespective of its distance from the active particle or agent
having energy or money less than the threshold or poverty line
0) differs in form significantly from the Gibbs distribution,
for finite values of 6. The order parameter O, giving the
average fraction of particles (or agents) having energy (or
money) below 6, shows a phase transition behavior: O = 0
for 6 <6, and O # 0 for 6 > 6, (see Fig. 2 for the mean
field, Fig. 6 for 1D, and Fig. 9 for 2D, respectively). The
critical values are given by 6, ~ 0.61, 0.81, and 0.68 for
mean-field, 1D, and 2D cases, respectively. The variation of O
near 6, is quite universal (see Fig. 5). We find O ~ (0 — 6,)f
with 8 >~ 0.97, 0.41, and 0.67 for mean-field, 1D, and 2D
cases, respectively. We also find that the relaxation time t

diverges strongly near 6, as T ~ (8 — 6,)~% with z ~ 0.83,
1.9, and 1.2 for mean-field, 1D, and 2D cases, respectively.
Finally, at 6 =6,, O(t) ~t~® where 8 ~ 0.93, 0.19, and
0.43 for mean field, 1D, and 2D cases, respectively (see
Table I).

It might be mentioned here that the above exponent values
are indeed very close to those of the Manna universality (MU)
class ( [18]; see also [21,22]) in the mean-field, 1D, 2D cases:
Our estimates of 8 >~ 0.97, 0.41, and 0.67 for mean-field, 1D,
and 2D cases, respectively, are quite close to § >~ 1, 0.38, and
0.64 for the corresponding MU cases; § ~ 0.93,0.19, and 0.43
for mean-field, 1D, and 2D cases are also close to § >~ 1, 0.14,
and 0.42 in the corresponding MU cases. However, it may
be noted that significant differences in the above estimates do
exist. Also, z >~ 0.83, 1.9, and 1.2 for mean-field, 1D, and 2D
cases might be compared with z >~ 1, 1.87, and 1.22 in the
corresponding MU cases. These discrepancies could be due
to the finite size effect, and in that case the critical behavior of
our model would belong to the MU class. As one can see, the
estimated values of the exponents 8, §, and z fit reasonably
with the scaling relation § = §/z within our limits of accuracy.
In this connection, it is worth mentioning that the violation
of the above scaling relation has also been observed [23],
although such discrepancies seem to get removed if one
uses all-sample averages instead of averages over surviving
samples [24]. In our case, however, this scaling relation seems
to hold, as our simulation results correspond to all-sample
averages.

In summary, when the energy threshold 6 is introduced
in the kinetic theory of the ideal gas such that stochastic
energy-conserving scatterings between any two particles can
take place only when at least one has energy less than 6, the gas
system shows an intriguing dynamic phase transitionat = 6.,
having the exponent values in the mean field (long-range
scattering exchange), one dimension, and two dimensions,
as estimated here using Monte Carlo simulation, as given in
Table I.
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