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a b s t r a c t

The extreme event statistics plays a very important role in the theory and practice of time
series analysis. The reassembly of classical theoretical results is often undermined by non-
stationarity and dependence between increments. Furthermore, the convergence to the
limit distributions can be slow, requiring a huge amount of records to obtain significant
statistics, and thus limiting its practical applications. Focussing, instead, on the closely
related density of ‘‘near-extremes’’ – the distance between a record and themaximal value
– can render the statistical methods to bemore suitable in the practical applications and/or
validations of models. We apply this recently proposed method in the empirical validation
of an adapted financial market model of the intraday market fluctuations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

One of the main challenges of quantitative finance has been to come up with models for stock returns that could
reproduce the implied or historical distributions of asset prices, to both acquire knowledge on the underlying dynamics
of price formation, and to consistently price and hedge derivative products. Refs. [1–4] are physicist-friendly references
discussing the basics of such problems. Seen on a grosser level, finance shares many common features with the study of
(unfortunately, not so well-defined) ‘‘complex’’ systems, such as the ‘‘random’’ nature of the phenomena and the absence
of comprehensive and exhaustive theories. The analysis of extreme events plays a pivotal role every time an addressed
problem has a stochastic nature, since the rare extreme events can have rather strong or drastic consequences – making
it widely useful in geology, meteorology, as well as in financial economics [5]. Another motivation for studying extreme
events in finance can be to account for the observed fat tails of log-returns (deviation from the Normal distribution in the
tails) of stock prices. Though the field of extreme statistics is very well established as part of classical probability theory,
its applications can be hindered easily by non-stationarity and, often, slow convergence to the expected results. It is well
known that non-stationarity is the most prevalent cause of anomalous behaviors in financial time series (see for example
the discussion in Ref. [6]), and thus the application of extreme event statistics has to be used with caution or reservations in
most cases of financial data.

Focusing the analysis on a simple version of an existing financial model, we present how the recently defined simple
concept of near-extreme distribution [7] can be helpful when studying financial time series data. The poor performance
(slow convergence) of the extreme value theory is not totally overcome in this complementary approach. The main aim of
this paper is to qualitatively present the possible achievements of this theoreticalmethod. Thereforewe use simple standard
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statistical analyses (Kolmogorov–Smirnoff test and Q–Q plot) to substantiate our results, rather than sophisticated analyses.
The paper is organized as follows. Section 2 gives a brief review of the main results of the classical theory of extreme values,
along with the discussion of the limitations of its application. It also discusses the concept of near-extreme distribution
with a related formula. Section 3 gives a description of the financial data sets used, together with the explanation of how
we model intraday stock returns [8] for the demonstration of this approach. Finally, Section 4 is dedicated to the results,
analyses, discussions and conclusion.

2. The classical extreme value statistics (EVS) theory

This theoretical field was born between the 1920s and 1930s with the seminal works of von Mises [9], Fréchet [10] and
Fisher and Tippett [11], and soon became a well-established part of classical statistics with the works of Gnedenko [12] and
Gumbel [13]. Refs. [14,15] are modern and comprehensive introductions of the subject.

The cumulative distribution function F of the maximum xM of a finite set of N iid values (x1, x2, . . . , xN) distributed
respecting the probability density function g , may be written as

F(xM) = G(xM)N (1)
whereG(x) =

 x
−∞

g(u)du is the cumulative distribution function of any x; sometimes g andG are called parent distributions.
Note that here we will continually use only the term ‘‘maximum’’ bearing in mind the fact that it actually refers to both the
possible extremes, since each observation regarding maximal values is equally true for minimal values.

The theory states that, in the limit N → ∞, the function F(xM) converges to either a Weibull, a Fréchet or a Gumbel
distribution,

F(aNx + bN) = G(aNx + bN)N → L(x), N → ∞, (2)
for some suitable couple of weights aN and bN (we will omit the index M from xM when the context is clear). What
discriminates between the three cases of the limiting distribution L(x) is the behavior of g when x tends to infinity, i.e. the
tails. We do not discuss the details of the kind of convergence the theory predicts in different cases; the interested reader
can assume the ‘‘conservative’’ choice of weak convergence (convergence in distribution). Moreover, we do not present an
exhaustive description of the domain of attractions, but rather focus on the important cases with a language suited for
practical applications.
Weibull (Bounded function)

If the positive support of g is bounded, then F converges to a Weibull distribution LW (x):

LW (x) = exp(−(−x)β), with β ≥ 1. (3)
The appropriate weights aN and bN are

aN = bN − inf

x : 1 − G(x) ≤

1
N


and bN = sup {x : G(x) < 1} (4)

and the parameter β is given by the behavior of Gwhen approaching the value w = G−1(1) : G(x) ∼ (w − x)β for x → w. If
w is reached with an exponent smaller than unity, then the case is degenerate with a limiting distribution Ld(x) = δ(x−w).
Fréchet (Power-law behavior)

When g presents a power-law behavior G(x) ∼ x−α (for x → ∞ and for α > 0), the extremal-value distribution ap-
proaches the Fréchet distribution LF (x):

LF (x) = exp(−x−α). (5)
In this case the weights are given by

aN = inf

x : 1 − G(x) ≤

1
N


and bN = 0. (6)

Gumbel (Unbounded exponential or faster behavior)
Finally, when the parent function g has an unbounded support and its behavior at infinity is exponential (or faster) we

recover the Gumbel distribution LG(x):
LG(x) = exp(− exp(−x)). (7)

The weights are given by

aN = inf

x : 1 − G(x) ≤

1
Ne


− bN and bN = inf


x : 1 − G(x) ≤

1
N


. (8)

2.1. The limitations of EVS in straightforward applications

Unfortunately, there are some serious limitations in the direct application of this theoretical structure. When dealing
with financial time series we inherently work with non-stationary processes, which in this case can be translated into
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Fig. 1. Two explicit examples of slow convergence to the limit distribution. Top: Standard normal distribution. Bottom: q-exponential distribution with
index q = 1.3 (η = −1/0.3; see text after Eq. (9)). The color lines are the empirical densities of maxima for synthetic variables respecting the two different
parent distributions (the sample size of each statistics is 1000). The solid black lines are the limiting densities LG((x− bN )/aN )/aN and LF ((x− bN )/aN )/aN
and, finally, the black dashed lines are the theoretical finite sample densities.

log-returns being non-identically distributed. In other words, xi and xj with i ≠ j, do not have, in general, the same
distribution. Moreover, often the convergence to the theoretical distribution is very slow and the extreme values cannot
be assumed to be distributed according to L, if not for a very high value of the time series length N [16,17]. However, we
note that the hypothesis of independence between the elements of the analyzed set can be weakened. For example, the
same results still hold in the Gaussian case where the correlation between the xi and xi+k goes to zero as k−γ with γ > 1,
when k → ∞ [18,19].

For the illustration of the slow convergence, we use two important distributions: Gaussian and Tsallis q-exponential. The
Gaussian (standard Normal) distribution is ubiquitous, and its definition or properties well known, and hence the choice.
The choice of the latter, because ofmany recent applications [20–22] and its gaining usefulness. For the Tsallis q-exponential
distribution, we have

g(x) = (1 + (q − 1)x)
q

1−q for x > 0 with q > 1; (9)

it can be alternatively defined for a larger range of the parameter q, but we focus on this particular case. In econometrics, the
same distribution is known as the generalized Pareto law, and its tail index is equal to η = 1/(q − 1). Thus, its limiting
distribution is the Fréchet one. Fig. 1 depicts the extreme distribution for both Gaussian and q-exponential variables,
obtained using simple pseudo-random generation. From the figure, it is clearly evident that even for N in the order of
thousands, the difference between finite size theoretical distributions and the theoretical limiting distributions is still large,
and that the results of synthetic data are in fair agreement with the finite size distribution, as ought to be. The mismatch
could arise from the weights aN and bN ; it is possible that the shape is already satisfactorily close to the limiting one, but
this effect is not clear because of a slow convergence in the weights. However, there is no consistent way to discriminate
the nature of the slow convergence, and to our knowledge no ‘‘finite size adjustments’’ for the weights are present in the
literature.

Finally, we must also add the pragmatic issue that arises from the discrete nature of prices in the market. Per se, this
visible mismatch does not undermine the application of the theory, but in order tomake the function ‘‘smooth’’ and observe
a satisfactory convergence, a very large value N would be required again, enormous for the case in consideration. Fig. 2
shows the raw statistics of minimal values for market data, illustrating the issue.
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Fig. 2. Minimal value distributions for theMSFT data for τ = 2500 and different values ofN = 10, 25, 50, highlighting the effect brought by discretization.
For the full explanation of the symbols, legend and parameters τ ,N please refer to Section 3. The bin size is equal to 10−4 .

2.2. The near-extreme distribution

The idea that helps to overcome the mentioned problems is to analyze a closely related distribution, the near-extreme
distribution, recently proposed in Ref. [7], and already applied to similar problems in Ref. [23]. Roughly speaking, the near-
extreme distribution is the distribution of the distance from the maximal value in a finite set. Considering again a finite set
of N iid values (x1, x2, . . . , xN) distributed according to the parent density g (or its cumulative G), we call their maximum
xM = max(x1, x2, . . . , xN). According to Ref. [7], the empirical near-extreme densitywith respect to themaximum is defined
as

ρe(r,N) =
1

N − 1

−
xi≠xM

δ [r − (xM − xi)] , (10)

where r is the distance measured from the maximum value xM , and xM is not counted itself. Note that in order to obtain
∞

0 ρe(r,N)dr = 1 we are using a different normalization than in Ref. [7].
Under the assumptions andwith the current notationswe have introduced above,we can obtain the following expression

for the expected density

ρ(r,N) =

∫
+∞

−∞

Ng(x)G(x)N−2g(r − x)dx. (11)

This can be justified by noticing that ρ(r,N) is the convolution of the density of the distance from a given maximum with
the pdf of the maximum; the former can be written as g(x − xM)/G(xM) and the latter as Ng(xM)GN−1(xM) (the derivative
of Eq. (1)).

In Ref. [7], the authors describe the property of ρ(r,N) when N goes to infinity and show that near-extreme density
converges to different limiting forms depending on the tail of the original distribution. However, we work here with finite
sample N only and do not take interest in the limiting forms.

3. The data and model

3.1. Data set

The original data set consists of all trades registered in the primarymarkets of the analyzed stocks. The data are stored in
the Thomson Reuters RDTH data base made available to the Chair of Quantitative Finance by BNP Paribas. For the purpose
of our study, we extract from the RDTH database records consisting in the time of a transaction, the bid and ask prices
prior to each transaction, and the traded price. These data, appropriately filtered in order to remove misprints in prices
and times of execution, correspond to the trades registered at NYSE or at NASDAQ during 2007, for four shares of the Dow
Jones Industrial Average Index at that time, namely, C.N, GE.N, INTC.O and MSFT.O. The C.N and GE.N were primarily traded
at NYSE, while INTC.O and MSFT.O were primarily traded at NASDAQ. The full meaning of the symbols is available from
www.reuters.com. The choice of one year of data is a trade-off between the necessity ofmanaging enough data for significant
statistical analyses and the goal ofminimizing the effect of strongmacro-economic fluctuations. However, the consistency of
the discussed results during extreme condition periods are beyond the purposes of the present paper, and are left for future
studies. The stocks were chosen among the most active at that time, since, as already discussed, the size of the statistics

http://www.reuters.com
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can pose significant problems. We do not present results on a large set of different stocks because our main purpose is to
show the approach rather than the final ‘‘fit’’. An extensive study would need a formal definition of approximation rather
than a qualitative and general one. Moreover, we are aware that the method has to be finely tuned on the single stock
characteristics (activity, price, particular trends, etc.) and the raw or straightforward application of it could fail in general.
For this reason, we show the result on the simplest situations possible: Four similarly liquid stocks in the same index and
in the same economy (but not in the same sectors: Finance for C.N, general industry for GE.N and advanced technology for
INTC.O MSFT.O).

For each day the considered period is 10:00–15:45 h, precisely. The choice of the considered periods is to restrict the
hours only to the central part of the trading day, discarding the opening and closing period. This is justified, since data often
exhibit less ‘‘anomalies’’ during these parts of the trading day – errors tend to occurmore often during the first and last parts
of the continuous trading day (it often happens that some shares are opened for trading several minutes after the others,
due to potential issues during the opening auction).

Note that we do not use ‘‘physical time’’ as our unit of measure, but rather consider ‘‘trading time’’ (a.k.a. ‘‘event time’’
or ‘‘tick time’’) [24]. It is incremented each time an ‘‘event’’ occurs, that is each time the mid-price changes, i.e., each time
either the bid or the ask price changes. In this way, we do not consider a trade leaving the mid-price unchanged as an event.
As described in the following subsection, the final analysis is then performed by aggregating (summing) these events.

3.2. The intraday model and approximation idea

Given Si, the price time series sampled in ‘‘event time’’, and a time-lag τ , the log-returns rτ
i = ln Si

Si−τ
may bemodeled [8]

as a discrete-time stochastic process with a fluctuating variance:

rτ
i = σiϵi, (12)

where σ 2
i is the local variance of the process, and ϵi are samples of a standard Normal distribution. Any drift for the returns

may be neglected for the time scales under consideration. It is assumed that σi is varying slowly enough, so that it can
be treated as a constant over intraday time scales. Replacing σi with its local constant value σ , individual returns can be
approximated as rτ

i ≈ σϵi. Eq. (12) is a simplified version of ARCH–GARCH-like models used by the authors of Ref. [8] to fit
market fluctuations using simple statistics of the squared returns. As often happen in econometrics this leads to a mixture
of Normal distributions, helping us to model the non-stationarity and to overcome the tedious problem of evaluating the tail
index of a candidate parent distribution G [25,26]. For the sake of clarity, we want to stress the fact we call ‘‘time-lag’’ or
‘‘time-window’’ the parameter τ but it is not immediately connected with the physical time.

In our studies we proceed as follows:
• Fix a positive integer τ , representing a time-lag.
• From the original price time series St we extract the rτ

i s defined as

rτ
i = log

S(i+1)×τ

Si×τ

without allowing any overlap.
• Arrange consecutive rτ

i s in sets of lengthN , labeledwith the index j that runs from 1 to h, such that h is the number of sets
obtained and the total time series length T = h × N . Within each set j, we estimate σ 2

j as the classical sample variance,
and also evaluate the near-extreme statistics with respect to its maximum xjM , according to Eq. (10).

• The empirical near-extreme statistics is then given by the aggregation of each one of those statistics:

ρe(r,N) =
1
h

h−
j=1

1
N − 1

−
xi≠xjM

δ

r −


xjM − xi


. (13)

After some straightforward algebra and using our standing assumption we expect the near-extreme distribution to be

ρ(rτ ,N) =
1
h

h−
j=1

∫
+∞

−∞

Ngj(x)Gj(x)N−2gj(rτ
− x)dx (14)

where

gj(x) = N (0, σj) and Gj(x) =
1
2


1 + erf


x

√
2σj


. (15)

The corresponding cumulative distribution P is given by

P(rτ ) =
1
h

h−
j=1

∫
+∞

−∞

Ngj(x)Gj(x)N−2Gj(rτ
− x)dx. (16)
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Fig. 3. Examples of empirical near-extreme distribution vs. the expected theoretical distribution for the four analyzed stocks. The considered parameters
are τ = 2500 and N = 10, 25, 50.

In other words, we get that the near-extreme distribution of log-returns over a time-window τ can be obtained as amixture
of the corresponding near-extreme distribution for h Gaussian variables, and that each considered set of length N brings a
single element in the mixture.
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Table 1
K–S statistics for the distributions depicted in Fig. 3. One star stands for the fail of the test
at the 5% significance level (critical value 1.333), two stars for the fail at 1% (critical value
1.625). The values confirm the quality of the fit for all cases but INTC, where we experience
some problems, especially when analyzing the near-extreme distribution with respect to the
minima.

C max C min MSFT max MSFT min

N = 10 0.493 0.678 0.923 0.961
N = 25 1.06 0.784 0.602 1.137
N = 50 1.23 2.03** 1.029 0.595

INTC max INTC min GE max GE min

N = 10 1.524* 2.320** 0.560 1.228
N = 25 1.567* 1.673** 1.226 0.706
N = 50 0.954 2.697** 1.520* 1.022

Table 2
Sample sizes; the K–S statistics are obtained from the formula

√
Sample sizemax ‖P(rτ ) −

Pe(rτ )‖.

C GE MSFT INTC

N = 10 7946 7206 14496 14398
N = 25 8472 7679 15501 15380
N = 50 8624 7840 15826 15677

If the model and the underlying assumptions are valid we should observe an agreement between the expected
‘‘theoretical’’ distribution in Eq. (14) and the empirical distribution corresponding to Eq. (13).

4. Results and discussion

In 2007, NYSE and NASDAQ had 251 days of open business and in the analyzed periods (see Section 3.1) we isolated
more than 22.4 [million] events for C, 20.3 for GE, 40.4 for INTC and 40.8 for MSFT. Fixing τ = 2500 we obtain more than
30 intraday returns for C and GE and around 65 for INTC and MSFT. With these parameters a set of N returns could be a bit
longer than a day, but its components remain inherently intraday objects. Fig. 3 shows themain results obtained considering
N = 10, 25, 50. The solid lines are the ‘‘theoretical’’ distributions as defined by the discussion in the previous sections
(Eq. (14)) and the dots report the direct estimation of the near-extreme cdf.

The agreement between the theoretical and empirical fits appear to be satisfactory, especially in the first half of the
distributions, where the ‘‘near’’ of the term near-extreme actually takes place and it is remarkable how we can fit with a
single distribution both near-maximum and near-minimum statistics. In some cases the prediction loses its power when
the curve approaches unity, i.e. when the opposite tail of the log-return distribution begins to play the main role; no longer
the ‘‘near’’-extreme ones, but actually a ‘‘far’’-extreme distribution. As already mentioned, the main aim of this paper is
the exploration of a new tool/idea, but nevertheless we can assess the significance of our result performing some simple
statistical analyses. We choose to apply the Kolmogorov–Smirnov test (in Table 1) and to show the Q–Q plots (in Fig. 4). The
K–S statistics is defined as D = max ‖P(rτ ) − Pe(rτ )‖ and the null hypothesis is considered rejected at the 5% significance
level, when

√
Sample size D is larger than 1.333, and at the 1% significance level, when larger than 1.625 [27]. The only

stock presenting systematic problem is INTC, where the fits fail especially when applied to the minimum case. All the other
results are satisfactory. For completeness, Table 2 reports the sample sizes. The Q–Q plots highlight the good agreement of
location, scale and skewness of the compared statistics and huge deviations from the straight line are observable only when
the quantiles approach unity. In Fig. 4, plots for N = 25 and 50 have been shifted to facilitate readability.

In general, we can say that the method gives satisfactory results for τ in the range of a few hundreds to roughly ten
thousand and for N between 10 to 100. When τ is too small, the local Gaussianity idea breaks down (given the discrete
nature of the prices as shown in Fig. 2 and the strong dependences) and when N is not large enough the estimations of
the variances become too noisy. On the other hand, an excessively large value of those parameters (for a large N or τ , h as
defined in Section 3.2 becomes small) tend to give much more importance to each and every extreme value, and to give a
poor statistics of variances. As a final remark we would like to clarify that our ‘‘estimator’’ for the distribution as defined in
Eq. (14) can be seen as a mixture of the distributions defined in Ref. [7], exactly in the same fashion used in Ref. [8] to fit the
intraday log-return distribution.
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Fig. 4. Q–Q plots for the near-extreme statistics depicted in Fig. 3. The match between theoretical and empirical quantiles is satisfactory, except for some
differences approaching 1 (upper-right part of plots). The cases N = 25 and N = 50 have been shifted for the reader’s convenience. The considered
quantiles start zero to 0.98 with a step of 0.02.
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