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Abstract We study unit-level expenditure on consumption across multiple countries
and multiple years, in order to extract invariant features of consumption distribution.
We show that the bulk of it is lognormally distributed, followed by a power law tail
at the limit. The distributions coincide with each other under normalization by mean
expenditure and log scaling even though the data is sampled acrossmultiple dimension
including, e.g. time, social structure and locations. This phenomenon indicates that the
dispersions in consumption expenditure across various social and economic groups are
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significantly similar subject to suitable scaling and normalization. Further, the results
provide a measurement of the core distributional features. Other descriptive factors
including those of sociological, demographic and political nature, add further layers
of variation on the this core distribution. We present a stochastic multiplicative model
to quantitatively characterize the invariance and the distributional features.

Keywords Inequality · Invariance · Consumption distribution · Power law ·
Lognormal distribution

JEL Classification D63 · D30 · I32 · E21

Any city, however small, is in fact divided into two, one the city of the poor, the other of the rich …
-Plato [380 BC]

1 Introduction

Plato’s remark as stated at the beginning refers to the intuitive notion that even though
the reason for inequality could be vastly different, but the dispersion in affluence is
always present. Seminal work by Pareto (1897) shows that the right tail of the wealth
distribution has a power law tail. Further explorations have shown that this feature
is invariant across countries although the origin of the power law is not settled yet,
either theoretically and empirically. The existence of a fat tail constitutes one such
invariance even though the exponent and the share accruing to the top income classes
are seen to be fluctuating substantially across countries and time (Atkinson and Piketty
2010; see also Chakrabarti et al. 2013). The bulk of the distributions are also described
well by lognormal or gamma distributions (Chakrabarti et al. 2013), which again is
susceptible to substantial variation in parameters even though the functional form
remains the same. Thus there is hardly any precise and specific quantitative feature
which is common across samples.

Quantifying inequality has been one of the most important factors in devising eco-
nomic policies targeted towards mitigating the same. Theoretical tools developed for
that purpose are equipped to find out the level of inequality based on a vector of
income or wealth from a sample of units. Depending on the case, the unit could be an
individual or a household (or something else). Keeping track of the level of inequality
for the same sample over time or the same across different samples collected at the
same point in time, allows us to make comparative judgments about the dynamics
of inequality. In this paper, we ask the question: is there any fundamental feature of
inequality that is invariant across samples (both across time and geographic bound-
ary)?

We argue that in case of consumptions, the mean of the distribution is an important
scaling factor. Once the distributions are normalized by their respective mean val-
ues, the inequality of the normalized sample show reasonable agreement in terms of
numerical values. We study data with large sample size across three countries (India,
Brazil and Italy) and a number of years (distinct waves when the data were collected).

123



Quantifying invariant features of within-group inequality…

Each country is a fiscal and monetary union of smaller states and/or other units e.g.
religious or ethnic groups. The financial markets are also more integrated within each
country than across countries. Both of these imply that the consumption decisions
faced by households within a country are made in an environment much similar than
households across countries. We show that within each country, the consumption dis-
tribution across different economic or social identities (states or religions or locations)
show almost identical features once normalized by the respective mean values. The
choice of set of countries (India, Brazil and Italy) under study stems from data avail-
ability.

To account for the distributional features, we provide a small-scale heterogeneous
households model to quantify the dispersion and the existence of both lognormal
bulk and power law tail. Previous models had either focused on the bulk which is
lognormally distributed e.g. the literature that builds upon the approach proposed by
Kalecki or the tail, which is power law distributed (see Chakrabarti et al. 2013).
In the present paper, we propose a mixture model that is able to generate both
simultaneously. In the model, we assume that households’ consumption decisions
are affected by habit. They interact through a capital market and receive idiosyn-
cratic shocks in labor income that they cannot smooth out. Such incompleteness in
the market along with heterogeneity in habits across households, generate a distri-
bution of consumption. Using tools from distributional analysis, we show that the
distribution has a dominant power law component in the limit and a lognormal
bulk.

Methodologically, the idea of collapse of distributions with proper scaling of social
data came from Fortunato and Castellano (2007) and Radicchi et al. (2008). Fortunato
and Castellano (2007) proposed that such colapse is seen in voting behavior and
Radicchi et al. (2008) showed that such behavior is also found in citation distribution.
However, our work is probably the first one relating the collapse behavior with large-
scale economic data. In terms of statistical features, we show that the tail of the
distribution follows power law behavior which is seemingly absent in the social data
analyzed in the above-mentioned papers. For the sake of completeness, we should
also mention that in recent times the existence of power laws in income and wealth
data have come under scrutiny (see e.g. Clauset et al. 2009). Brezinsky (2014) in fact
proposes that power law fits only 35% of the wealth distribution of richest people (data
obtained from Forbes’ List; see paper for further details). However, we note that the
existing evidence in favor of power law in the wealth distribution is comparatively
much larger (see Chakrabarti et al. 2013; Sinha et al. 2010 for very comprehensive
reviews). Thus we consider our result that consumption distribution has a power law
tail, to be consistent with the current literature.

Chatterjee et al. (2016) was an initial attempt to study if there is any invariance in
consumption. However, the scope of that studywas very limited due to data availability
(India 66th round, year 2009–2010). In the present context, we have analyzed a much
bigger data set from multiple countries spanning over multiple years. This paper is
related to two strands of literature. One, we invoke the idea of invariance in distribu-
tions of economic quantities like income or wealth (Pareto 1897). We differentiate our
work from Kuznets (1955) who stressed the evolution of inequality across time due
to evolution of market institutions. In a similar vain, Acemoglu and Robinson (2013)
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proposed a theory of historical evolution of inequality as a reflection of the evolution
of political institutional features. A different version was proposed by Galor (2011)
which emphasized development of institutions, specially educational sector being
an important factor. Our approach is complementary in that we propose that there
always exists a substantial level of inequality conditional on the state of the economy
which is captured by the average affluence. On the technical side, there are multi-
ple attempts to model the power law structure which is the most commonly known
invariant feature of income/wealth distributions. Chakrabarti et al. (2013) contains a
number of models in that direction. Benhabib et al. (2014) showed that it is possible
to generate a power law in the tail by using an overlapping generation framework
with incomplete markets. As we have discussed in the modeling section in details,
we use the specifications in Gabaix (2011) and Kelly et al. (2013) for analytical pur-
pose.

In the next section, we describe the data and summary statistics of consumption
distribution. In the following section, we present the key results regarding varia-
tion in consumption across countries and time. Finally, to account for the robust
pattern we see in data, we present a simple stochastic model of consumption dis-
tribution.

2 Data description

We use the data for Household Consumer Expenditure 68th Round (2011–2012) from
the National Sample Survey Office NSSO (2011–2012) of India. It contains informa-
tion about expenditure incurred by households on consumption goods and services
during the reference period. These sample surveys are conducted using households as
unit of the economy. This ignores heterogeneity in household size but the data con-
tains information about monthly per capita consumer expenditure (MPCE) in Indian
Rupee (INR). Data is available for all sampled households in the different states and
Union territories (UT), across several parameters like castes, religions and rural–urban
divide. Chatterjee et al. (2016) studied Household Consumer Expenditure 66th Round
(2009–2010) collected by the National Sample Survey Office (NSSO) which collected
data for multiple definitions of expenditure and used multiple definitions of inequality.
The important conclusions we draw from that study is that the results are robust to
such changes in definitions. So we focus on very specific and standard definitions only,
in the present work. There are 101,717 households in this data set (see Tables 4, 5).
To study the inequality structure, we use two kinds of data which provides two per-
spectives.

Data from Brazil is procured from IBGE—Instituto Brasileiro de Geografia e
Estatística. The Consumer Expenditure Survey data from two rounds (IBGE (2002–
2003) with 48,470 households and IBGE (2008–2009) with 55,970 households) are
used here (Table 1). The data contains information about household size, geograph-
ical location (state) and consumer expenditure in Brazilian Real (BRL) for different
expenditure sectors, among other things.

For Italy, we use microdata provided by d’Italia (2015) and has information
about household consumer expenditure in Euro (EUR). We analyze 10years of data
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Table 1 Number of households, average per capita consumption expenditure E(x) and Gini indices for
Brazil, for 2 rounds 2002–2003 and 2008–2009

ID State index 2002–2003 2008–2009

#Households E(x) Gini #Households E(x) Gini

1 11 Rondônia 1112 10,870 0.535 907 15,090.8 0.498

2 12 Acre 960 8361.9 0.570 863 12,854.8 0.484

3 13 Amazonas 1075 7388.29 0.549 1344 11,011.6 0.504

4 14 Roraima 554 9221.05 0.529 644 12,965.1 0.558

5 15 Pará 1666 6645.31 0.509 1894 12,063.7 0.538

6 16 Amapá 568 7163.86 0.510 689 14,428.5 0.537

7 17 Tocantins 933 8027.05 0.569 1270 12,306.8 0.498

8 21 Maranhão 2231 4749.73 0.502 2562 8725.61 0.524

9 22 Piauí 2222 6263.12 0.557 2056 9844.81 0.498

10 23 Ceará 2017 6351.92 0.571 1861 8553.52 0.514

11 24 Rio Grande do Norte 1548 6819.38 0.558 1342 11,016.7 0.501

12 25 Paraíba 2367 5614.04 0.538 1628 10,990.6 0.543

13 26 Pernambuco 1674 7126.29 0.558 2367 11,360.2 0.532

14 27 Alagoas 2965 6601 0.583 2712 9138.34 0.541

15 28 Sergipe 1143 6705.08 0.518 1654 12,289.4 0.512

16 29 Bahia 2457 7678.18 0.584 3050 11,997 0.539

17 31 Minas Gerais 3004 11,283.4 0.528 5028 17,065.8 0.508

18 32 Espírito Santo 2337 12,148.5 0.535 3489 16,538.2 0.511

19 33 Rio de Janeiro 1285 17,973.1 0.591 1938 22,063.4 0.551

20 35 São Paulo 2017 16,074.3 0.516 3623 22,592.2 0.486

21 41 Paraná 2263 12,733.5 0.519 2477 17,829.8 0.470

22 42 Santa Caterina 1989 12,169.9 0.464 2029 23,447.8 0.498

23 43 Rio Grande do Sul 1850 14,370.6 0.534 2210 20,394.7 0.482

24 50 Mato Grosso do Sul 2541 9788.09 0.505 2247 17,071.5 0.498

25 51 Mato Grosso 2355 9241.06 0.513 2423 14,363.5 0.488

26 52 Goías 2356 9160.95 0.505 2686 16,997.5 0.523

27 53 Distrito Federal 981 26,497.2 0.590 977 26,081.3 0.564

All Brazil 48,470 9626.94 0.568 55,970 12,777 0.533

Tabulated across states

(1980–1984, 1986, 1987,1989, 1991, 1993, 1995, 1998, 2000, 2002, 2004, 2006, 2008,
2010, 2012). See “Data summary” of appendix for description and summary statistics.

3 Results

In this section, we discuss the main results of data analysis. First feature is that the
normalized data collapses on one single distribution. The second feature is that the
distribution is lognormal followed by power law tail.
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3.1 Invariance

The available consumption data shows a scaling property across time and countries.
Consider a variable x which denotes consumption expenditure. Suppose it has a dis-
tribution pit (x) in cross section, in the i-th country, t-th period. We show that by
choosing a suitable scaling parameter, the data collapses into one single aggregate
distribution across different countries and years upon taking log transformation. That
is, the scaled variable

Xit = log

(
xit

τ
1/κ
i t

)
(1)

has a distribution
pit (X) = p(X) (2)

for all i and t . The parameters we chose, are mean consumption expenditure (τi t =
E(xit ) where E(·) denotes expectation operator) and κ = 1. Collapse of data onto a
single distribution indicates that there is a core inequality process which is generated
and described by mechanisms similar across geographic boundary and time.

3.2 Normalized distributions

Consider a variable x following a lognormal distribution,

f (x) = 1

xσ
√
2π

exp

(
− (log x − μx )

2

2σ 2
x

)
. (3)

The mean of this distribution is

E(x) = eμx+ σ2x
2 (4)

and the variance is given by

V (x) =
(
eσ 2

x − 1
)

· e2μx+σ 2
x . (5)

Thus upon normalization by the mean, the new distribution has a mean of

Enorm(x) = e0 = 1 (6)

and variance,
V norm(x) =

(
eσ 2

x − 1
)

. (7)

By linearizing the exponential term in the variance we get

V (x) = σ 2
x + 2μσ 2

x + σ 4
x (8)
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whereas for the normalized variable we have

V norm(x) = σ 2
x . (9)

The tail of the distribution is found to be power law or a Pareto distribution which can
be represented as

p(x) ∼ x−(1+γ ). (10)

By the nature of the distribution, power law is scale-free i.e. normalization of data
which is power law distributed, leaves the distributional features unchanged.

The scaled distribution in all cases show a lognormal bulk and a power law asymp-
totically. This form has also been argued to be extracted from income and wealth data
(Chakrabarti et al. 2013). The difference is that here, the exponent of the power law
tail is much higher than that of income or wealth distributions indicating much faster
rate of decay and lower inequality (see also Sinha 2006; Jayadev 2008; Subramanian
and Jayaraj 2009 for detailed analysis on household wealth distributions in India). The
finding that consumption is less dispersed than income is consistent with the available
evidence (Christiano 1987). Finally, we note that Eq. 1 is a linear transformation of the
original expenditure variable and hence the distributional features remain intact. Only
the moments change due to this transformation. See Sect. 3.2 for a short description
of the parametric features of the normalized distribution.

We present the distribution of the scaled expenditure variable in Fig. 1 in for Indian
states and also for other dimensions including caste (panel b), religion (panel c) and
urbanity (panel d). This figure with superimposition of the cross-sectional data shows
that the distributions coincide under normalizationwhich is consistent with the prelim-
inary findings made by Chatterjee et al. (2016) for different wave of data collection.
The bulk of the data fits with lognormal distribution and the tail fits with a power
law. Figure 2 shows a similar data collapse in case of Brazil across all states in two
given years and Fig. 3 shows for multiple years across all states. The data is fitted with
a lognormal distribution. In Fig. 4, we present normalized Italian data across years.
Similar to the Indian data set, the bulk fits with lognormal distribution and the tail is
fitted with a power law.

The fitting have been done in Gnuplot software. We have used nonlinear least-
squares (NLLS) Marquardt–Levenberg algorithm for all of the fitting exercises. We
also report the asymptotic standard errors of the point estimates. For Indian data
(NSSO round 68; Fig. 1), bulk of the distribution has been fitted with lognormal
distribution with parameters μ = −0.30 ± 0.03, σ = 0.52 ± 0.03. The tail has
been fitted with a Power law with coefficient −3.56 ± 0.02. For Brazilian data, we
obtained μ = −0.65 ± 0.01, σ = 0.95 ± 0.01 for the lognormal fitting (Fig. 3). For
data obtained from Italy (Fig. 4), the bulk has been fitted with a lognormal distribution
μ = −0.13±0.02, σ = 0.50±0.01. The tail is fittedwith a Power lawwith coefficient
−4.3 ± 0.1. For robustness checks, we estimated the power-law coefficients with the
methods developed by Clauset et al. (2009). This method gives joint estimation of the
power law coefficient along with the cut-off. For India, the coefficient is 3.6 with an
estimated cut-off of 4481. For Italy, the coefficent is 5.0 with an estimated cut-off of
75,000.
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Fig. 1 Collapse of consumption expenditure data for Indian states. Data collected for round 68 (2011–
2012). a Normalized data for all states. Fitted with a lognormal distribution and a power law at the right
tail. b Normalized data across caste categorization. c Normalized data across religious categorization.
d Normalized data across urban and rural population
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Fig. 2 Consumption expenditure data across Brazilian states normalized with respect to the respective
mean expenditure across states; a year 2002–2003, b year 2008–2009. See Table 1 for details

We have executed formal tests of how close the distributions are across states
or across years, after proper normalization. The results have been shown in Fig. 5. It
should be noted that the variable under consideration is log(x/E(x)) (Eq. 1). We show
that for a substantial number of cases, the normalized and log-transformed variables
across states within a country (India and Brazil) or across time for the same country
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Fig. 3 Consumption
expenditure data across years in
all states of Brazil combined.
a Year 2002–2003, b year
2008–2009
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Fig. 4 Consumption
expenditure data across years in
all states of Italy combined. Data
ranges from 1980–2012 (see
Table 3 in “Appendix”)
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Fig. 5 Two sample Kolmogorov–Smirnov test for pairs of data. Left panel: pairwise test for all Indian
states (2011–2012, Id: state). Middle panel: pairwise test for all Brazilian states (2008–2009, Id: state).
Right panel: pairwise test for all Italian data across years (Id: year). Null hypothesis: two distributions are
exactly identical. Colorcode: white square represents that the test rejects the null hypothesis at 1% level of
significance. Black squares represent the complementary scenario

(Italy) are actually distributionally identical. Thus not only the broad algebraic forms of
the distributions (lognormal bulk and power law tail) coincide, but also the parameters
describing the distributions are very similar. In particular the Brazilian data establishes
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our claim. One interesting point is that such tests could be sensitive to existence of fat
tails. Given that both India and Italy show prominent fat tails, it is not surprising that
there are not many cases where the distributions are identical according to the test.
Essentially this could be attributed to the existence of outliers (data on extreme right
tail of the distribution) whereas the bulk of the data do fall on a single distribution.

4 An heterogeneous agent model

Here we propose a brief model of evolution of the consumption distribution. The basic
goal would be to account for two observations, viz., the bulk of the distribution is seen
to be following a lognormal distribution and there is a Pareto tail. Several assump-
tions are necessary to simplify the exposition. Time is discrete and goes till infinity
i.e. T = 1, 2, . . .. There are N dynasties who are producing and consuming. With a
little abuse of notation, we will also use the same N to denote the set of agents as
well where no confusions arise. Each dynasty can be thought of as an unit of obser-
vation in the present context. We do not attempt to provide any microfoundation of
their consumption decision and construct our model based on the approach recently
introduced in Gabaix (2011) and Kelly et al. (2013). They consider firm growth pro-
cess resulting from interconnection among a large number of firms. The dynamical
properties are developed from the proposed set of interconnections. In this case, we
follow a similar route and assume that the growth rate of consumption expenditure
at the unit level (the unit could be individual or family or household depending on
the case) admits interconnections between agents who differ in their attitude towards
consumption. At the same time, we keep our model general enough to incorporate
aggregate effects like long-term growth which can potentially affect inequality (posi-
tively or negatively). Hence, the growth rate of consumption expenditure is assumed
to be a function of the level of present expenditure, household specific factors and the
state of the macroeconomy.

In particular, we propose the following behavioral form of growth rate of expendi-
ture of the i-th unit at any generic time-point t

x̂i (t) = �xi (t)

xi (t − 1)
,

= λi (t) (xi (t − 1))αi (t) +
ηi (t) + r(t)bi (t)

(∑N
j w j (t)

)
+ χi (t)

xi (t − 1)
− 1 (11)

where αi is agent specific shock, ηi (t) is the contribution of all unit-specific behavioral
factors (e.g. religion, sex, geographic location etc.) that can potentially affect the level
of consumption expenditure, χ j (t) is a noise term with mean μ and variance σ 2. The
term αi (t) plays an important role to differentiate the households according to the
propensity of multiplicative return (in log). We will elaborate on this point in Case
I, II and II described below. The term in the middle requires elaboration. We assume
that consumption expenditure is affected through wealth accumulation process. We
are agnostic about the preferences of agents who participate in the same process and
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introduce a parameter bi (t) that captures the effects on the i-th dynasty. The rate of
return is given by r(t). The aggregate wealth (capital) is given by

∫
w j (t)d j . below,

we describe in details about the aggregate effect on consumption growth.
There are someclassic studies on the growth rates of consumption. In particular,Hall

(1978) provided a framework to study the growth rates of consumption expenditure
in the following from,

x̂i (t) = χi (t)

xi (t − 1)
. (12)

In “Random walk in consumption” of appendix we provide the basic framework that
gives rise to such a growth rate. However, empirical studies have rejected suchmodels.
Jaeger (1992) presents evidence that the theory is rejected when tested with U.S. data.
Haug (1991) shows that the discrepancy might come from time aggregation bias (see
alsoMolana 1991). In a separate field of study, the firmgrowth rates had been described
by similar functional forms. In particular, Gabaix (2011) starts describing a granular
economy where each firm has a growth rate of

x̂i (t) = χi (t) (13)

which is known to generate a lognormal distribution (see below). Such specifications
are known as Gibrat’s law (Gibrat 1931). However, empirical estimations show that
such a growth equation is incorrect (Hall 1987; Evans 1987; Calvo 2006). Kelly et al.
(2013) expands this simple framework to incorporate relationships between growth
rates as follows,

x̂i (t) = f ({x̂ j (t)} j ,Wi, j∈N (t), χ(t)) (14)

where f (·) captures a linear evolution of growth rates across size x and W captures
the interaction matrix. We combine the above mechanisms to propose Eq. 11.

Imagine that the production function is given by the following simple equation

Y (t) = s(t)K (t) (15)

which says output is a linear function of capital (K ) and a productivity shock s.
One can incorporate labor. But for simplicity of exposition, we ignore it and assume
that households (or individuals) supply labor inelastically. The rental payment in the
competitive market exhausts the total output. Noting that wealth acts as capital, we see
that the income is given by Y (t) = r(t)

∫
w j (t)d j in absence of wage income. Note

that this also introduces a coupling among the agents through the capital market. This
is the only source of direct interaction among agents (see Vikram and Sinha 2011 for
a similar form of mean-field coupling to model asset fluctuation behavior in a multi-
agent setting). Effectively such a factor induces an aggregate shock (rate or return r
is a function of the aggregate shock s) to the dynamic process. This type of approach
to link the dynamic processes of multiple agents can also be seen in Solomon (1998)
although the links in the generalized Lotka–Volterra type models were considered for
scaling purposes (and not for representing any aggregate shock).

We can decompose the income as the sum of a trend component (Y T (t)) and a
transitory component (YC (t)):
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Y (t) = Y T (t) + YC (t). (16)

The transitory component captures the purely fluctuating part. Note that by construc-
tion

E(YC (t)) = 0. (17)

Since we have shown that there is an invariance in the distribution of expenditure once
the data is normalized with respect to the household specific microeconomic factors,
we ignore their contribution for modeling the core inequality process. Also, we are
ignoring the trend assuming that it does not affect inequality in the short-run. By taking
all of the above into consideration, we arrive at the following equation,

x̂i (t) = λi (t) (xi (t − 1))αi (t) +
(
bi (t)YC (t) + χi (t)

)
xi (t − 1)

− 1. (18)

Therefore, we can use the definition of the growth rate and rewrite the above equation
as

xi (t) = λi (t) (xi (t − 1))1+αi (t) + bi (t)Y
C (t) + χi (t). (19)

The business cycle component induces a distortion on the mechanism. Note that
it is a common factor to all agents. Thus if for a sustained period (a few quarters),
the economy is either hit by very high or very low shocks expenditure growth rate is
affected exacerbating inequality. On the other hand when the economy returns to the
baseline (zero shock), the growth rates are diminished reducing inequality. Business
cycle can be taken to be an exogenous factor as usually it affects inequality and the
converse is unlikely. Thus due to the business cycles, inequality might wax and wane
(Heathcote and Perri 2015 for example relates wealth inequality to GDP volatility).

Equation 19 forms the basis of the subsequent analysis. Below we show known
solutions of the above dynamic equation in three limits.

Case I.Let the transitory component and the agents’ idiosyncratic shocks to expen-
diture be identically equal to zero i.e. YC (t) = 0, αi (t) = 0 and χi (t) = 0 for all
t in Eq. 19. Then the equation boils down to the following form

log(xi (t)) = log(xi (t − 1)) + log λi (t). (20)

This random walk in logarithm is known to generate a lognormal distribution
(assuming the error term has mean μλ and standard deviation σλ),

f (x, t) = 1

x(t)
√
2πσ 2

λ (t + 1)
exp

(
− (log x(t) − (t + 1)μλ)

2

2σ 2
λ (t + 1)

)
. (21)

Due to the explicit time dependence, there does not exist a steady state distribution
for this process. Standard deviation increases without bound over time at the rate√
t + 1 (see for example Chakrabarti et al. 2013).
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Case II. Suppose the transitory component and the noise term are zero and the
idiosyncratic term has a distribution over [αmin, αmax ] where 0 < 1 + α < 1 for
all α ∈ [αmin, αmax ] and all moments exist. Then we have

log(xi (t)) = (1 + αi (t)) log(xi (t − 1)) + log λi (t). (22)

By solving it recursively and using the lag operator L , we can rewrite it as

xi (t) = exp([1 + (1 + αi )L + (1 + αi )
2L2 + · · · ].λi (t)). (23)

For simplicity of exposition we assumed αi (t) = αi which can be relaxed without
changing the basic result. Thus the bracketed term becomes the sum of an infinite
series of noise terms with standard deviation going to zero in limit. Hence, this
process reaches a steady state described by a lognormal distribution. This process
was formulated and proposed as a model of income evolution by Kalecki in 1945
(see Chakrabarti et al. 2013 for a detailed exposition).

Case III. Consider Eq. 19with the idiosyncratic term distributed over [αmin, αmax ]
where E(α) = 0 and σα → 0. We make two additional assumptions, (a)
E(log λi (t)) < 0 and (b) ηt = bi (t)YC (t)+χi (t), is distributed overR+. Sornette
and Cont (1997) shows that under such assumptions, the steady state distribution
is power law. Such a dynamics is called Kesten process

x(t) = λ(t)x(t − 1) + ξ(t), (24)

which is known to generate power laws in the limit (Kesten 1973). Gabaix (1999)
uses such a mechanism to generate a power law in the city size distribution. See
also Sornette (2006) for a textbook treatment.

4.1 Heterogeneity of agents

We introduce heterogeneity among the agents along one dimension viz., the upper
range of the multiplicative factor (λmax ). Let us assume without loss of generalization
that 0 < λi,max ≤ λ j,max for all i ≤ j and there exists some agent 1 < k < N for
whom λk,max = 0. For all agents, −1 < αmin ≤ αmax ≤ 0. Thus effectively there are
two types of agents. Fraction f of total number of agents have 0 < λi,max < 1 for
all i ∈ N f where N f is the set of all such agents. The evolution of the expenditure is
given by Eq. 19, which we can rewrite as

log(xi (t)) = (1 + αi (t)) log(xi (t − 1)) + log λi (t) (25)

ignoring the noise factor and the business cycle variation. Thus we are back to Case
II above.

The second type is described by λi,max > 1 with the condition that E(log(λi ) < 0)
as mentioned in Case III above. To gain intuition about why this process converges
to a power law, assume that E(α) → 0 and σα → 0. We assume that bi (t) is highly
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procyclical i.e. E(bi ,YC ) > 0. The first assumption allows us to maintain the exact
parametric requirement of the Kesten process. Strong procyclicality of consumption
share effectively induces a lower bar on the expenditure evenwhen the variable receives
consecutive bad shocks through αi . Thus this becomes a reflective barrier and we can
apply the methodology devised in the literature to find out the steady state distribution.

Gabaix (2009) provides a very simple proof that the mechanism generates a power
law. Assuming the existence of the lower (reflective) boundary through the business
cycle effects, we know that the variable can never be less than that. Hence, we consider
the other extreme and study the right tail when the variable is far from the boundary
making the additive terms relatively unimportant. Let us assume that themultiplicative
factor λi is distributed according to f (λ). Then we can write the evolution equation
of the expenditure variable X as

Prob. (Xi (t) < x) = Prob.

(
Xi (t) <

x

λi (t)

)
(26)

Letting the left hand side be denoted as Mt (e), we have a recursive equation

Mt+1(x) =
∫
R+

Mt

( x
λ

)
f (λ)dλ. (27)

The trick is to apply the criteria that when the system converges, the above equation
would be time independent and one can guess and verify the functional forms. In
particular, Gabaix (2009) shows that M∞(X) ∝ 1/Xγ solves the equation and the
condition reduces to

E
(
λγ

) = 1. (28)

The same can also be shown using techniques developed by Sornette and Cont (1997).
Equation 28 describes the relationship between the distribution of the multiplicative
factor and the exponent of the distribution.

In Fig. 6, we present numerical simulations results for the evolution of the Pareto
exponent in the more general context (Eq. 19). Equation 28 gives the solution in only
one limit (α → 0). The left panel shows the determination of the exponent following
Eq. 28 in the limit. We use Monte Carlo simulation to find the Pareto exponent γ in
the general case. The right panel shows the estimated exponents for (α, E(λ)) pairs
on the parameter plane. For the purpose of simulation, α is taken to be a constant. For
each combination of α and E(λ), we simulate Eq. 19 and estimate the exponent. The
estimated exponents are averaged over O(10) realizations in order to arrive at stable
values. The surface indicates the exponents for different pairs of α and E(λ).

4.2 Shape of the ensemble distribution

As we have described in Sect. 4.1 above, there are essentially two types of agents. The
first type generates a lognormal bulk whereas the second type generates a power law
distribution for the tail. Here we want to show that for the aggregate distribution over
all agents in the economy, the tail is indeed described by a power law.
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Fig. 6 Simulation results. a We plot the curve E(λγ ) for 3 Monte Carlo realizations of the multiplicative
shock λ (with different averages) over a range of γ . At the points of intersection with the horizontal line, one
can find the theoretical prediction of the power law exponent γ from Eq. 28. b Estimated Pareto exponent
γ for simulations over (α, E(λ)) parameter space. Color bar shows the magnitude of γ with a cut-off at
2.5 which is indicative of the empirically estimated coefficient of the consumption distribution for India

For this purpose, we use a result (see Gabaix 2009 for a review) on the sum of two
variables both distributed according power laws with potentially different exponents.
Let the variables be v1 and v2. We assume that

xi ∼ C · x−(1+γi )

i (29)

with γ1 	= γ2. Then the sum these two variables (x = x1 + x2) will be distributed as

x ∼ C̄ · x−(1+min(γ1,γ2)). (30)

The intuition is simple: the fatter tail dominates the distribution. Note that the tail of a
lognormal distribution can be approximated well by a power law with high exponent.
Thus the tail of the aggregate distribution can be modeled as the sum of two power
lawswith different exponents. Since the exponent of the distribution that approximates
a lognormal distribution is typically quite large, the other distribution dominates (fol-
lowing Eq. 30).

5 Discussion and summary

In this paper, we describe two robust features of consumption inequality across time
and countries. One, if consumption data is normalized with a proper scaling factor, all
data collapses on one single aggregate distribution. Two, the distribution has a lognor-
mal bulk and a power law at the limit with high exponent (compared to income and
wealth). Finally we provide a stochastic model to account for the basic distributional
features.

In the present work, we differentiate between long run versus short run inequality.
We focus exclusively on the latter in order to study cross sectional properties of
inequality.
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Throughout our analysis, we have considered nominal data. There are two reasons
for it. One, the available data is in nominal terms. Two, in our cross-sectional analysis,
we normalize the data first with respect to a scaling factor. As long as within region
dispersion in price-levels are not significantly high, such a normalization takes care
of the pricing factors. All the subsequent analysis including cross-time and cross-
country comparisons are based on normalization with respect to respective scaling
factor. Hence, such comparisons are free of biases due to between-region or between-
time periods variations in general price levels.

The way we have described the consumption growth process, a number of addi-
tional implications can be presented. First, the power law arises due to the effects of
business cycle implying that inequality in cross-section can be affected by business
cycles. Heathcote and Perri (2015) documents that in U.S. mean wealth is negatively
correlated with macroeconomic volatility. One can argue that the changes in mean
wealth is also accompanied by redistribution of purchasing power affecting inequal-
ity, thus corroborating the prior implication. Stiglitz (2012) makes a point that there is
a relationship between fluctuations of macroeconomic fundamentals and inequality.
Secondly, in terms of the generative mechanism, our approach has a parallel with the
method used by Benhabib et al. (2014) which also generates a power law in income
in an overlapping generations framework. However, they provided a microfounded
framework for consumption-savings decision even though the essential mechanism is
similar. Earlier empirical works show that volatility of the business cycle is negatively
related to the total income of the country (Canning et al. 1998). In terms of the model
presented above, such a linkage would contribute to lower consumption volatility.
In a fully specified utility-maximization framework this would imply higher welfare.
Finally, all other non-economic factors are seen to affect the mean of the expendi-
ture distribution. This has a corollary that the spread of the core inequality process is
independent of the social, political and geographic factors. Angle (1992) and Angle
(1993) also made a similar observation by considering U.S. data for specific social
groups and conditioned on specific (e.g. racial or educational) factors. This is com-
plementary to our approach where we focus exclusively on the idea of core features
of the distribution.

Acknowledgements This research was partially supported by the institute grant, IIM Ahmedabad. ASC
acknowledges research assistance provided by A. Agarwal.

Appendix

In this section, we present the additional figures and tables. A simple derivation of
random walk model in consumption is also presented.

Data summary

In Fig. 7, we present the available cross-sectional data for India for all states for
three waves of data collection (2004–2005, 2009–2010 and 2011–2012). In the main
text, we have analyzed data for 2011–2012. Chatterjee et al. (2016) presents some
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Fig. 7 Cross-sectional unnormalized data of Indian consumption expenditure across states has been shown
for 3 waves of data collection (red circles for 2004–2005, green upward triangles for 2009–2010, blue
downward triangles for 2011–2012). Average growth in consumption over time is evident

complementary results on the data set from 2009–2010. Figure 7 shows the general
shift of the consumption density indicating both inflation and rising consumption
power. Figure 8 shows the available Brazilian data for all states for two waves of data
collection (2002–2003 and 2008–2009).

Details of the data and summary statistics have been tabulated in Table 1 (across
states) and Table 2 (urban–rural). Table 3 contains summary statistics for the Italian
data Finally, Table 4 (across states) and Table 5 (social and other dimensions) contains
summary statistics for the Indian data.

Random walk in consumption

In a standard utility-maximizing framework with representative agent, the Euler equa-
tion would be

u′(xt ) = βR(t)Et (u
′(xt+1)) (31)
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Fig. 8 Cross-sectional unnormalized data of consumption expenditure has been shown for 2 waves of data
collection for different states in Brazil (red circles for 2002–2003, blue upward triangles for 2008–2009)

Table 2 Number of households, average per capita consumption expenditure E(x) and Gini indices for
Brazil, for 2 rounds 2002–2003 and 2008–2009

Location 2002–2003 2008–2009

#Households E(x) Gini #Households E(x) Gini

Rural 48,357 18,352.6 0.514 43,193 16,658.7 0.528

Urban 114 20,352.3 0.478 12,777 9847.44 0.507

Tabulated according to location
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Table 3 Number of households,
average per capita consumption
expenditure E(x) and Gini
indices for Italy, for several
years

ID Year #Households E(x) Gini

1 1980 2980 8529.86 0.307

2 1981 4091 10,373.1 0.298

3 1982 3967 12,304.9 0.296

4 1983 4107 13,952.4 0.296

5 1984 4172 15,474.4 0.302

6 1986 8022 17,315.6 0.297

7 1987 8024 23,652.2 0.333

8 1989 8274 24,392.9 0.289

9 1991 8186 26,334.6 0.285

10 1993 8088 29,087.4 0.297

11 1995 8135 33,631.8 0.305

12 1998 7146 36,157.1 0.316

13 2000 8001 38,089.7 0.308

14 2002 8010 20,466.6 0.317

15 2004 8011 22,419.9 0.305

16 2006 7768 23,674.8 0.290

17 2008 7976 23,817.4 0.279

18 2010 7950 25,261.1 0.294

19 2012 8149 25,408.3 0.291

where u(·) is the utility function defined over consumption good x at time t . The
discount factor is denoted by β and the rate of return by R. Es(·) denotes expectation
with the information set s. The simplest framework to derive randomwalk (Hall 1978)
is to assume

u(x) = − (x̄ − x)2

2
(32)

where x̄ is the bliss point. Also assume Rβ = 1 to solve the above equation to get

Et (xt+1) = xt . (33)

Thus the consumption growth equation is

xt+1 = xt + χt+1, (34)

where χt+1 is the innovation term. Thus the growth rate is

x̂(t) = χ(t)

x(t − 1)
. (35)
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Table 4 Number of households, average per capita consumption expenditure E(x), Gini index for India

ID Geographic location #Households E(x) Gini

1 Jammu and Kashmir 3382 1846.749 0.310

2 Himachal Pradesh 2040 2105.473 0.336

3 Punjab 3118 2571.475 0.334

4 Chandigarh 312 3577.070 0.378

5 Uttaranchal 1784 2073.443 0.350

6 Haryana 2589 2575.453 0.365

7 Delhi 999 3653.659 0.382

8 Rajasthan 4127 1824.600 0.332

9 Uttar Pradesh 9018 1414.226 0.357

10 Bihar 4581 1243.082 0.286

11 Sikkim 768 1850.008 0.243

12 Arunachal Pradesh 1674 1863.248 0.371

13 Nagaland 1024 2185.466 0.241

14 Manipur 2560 1438.841 0.220

15 Mizoram 1536 2129.177 0.259

16 Tripura 1856 1609.395 0.290

17 Meghalaya 1260 1759.212 0.263

18 Assam 3440 1417.833 0.309

19 West Bengal 6317 1886.182 0.387

20 Jharkhand 2737 1349.507 0.341

21 Orissa 4029 1246.751 0.347

22 Chattisgarh 2173 1464.659 0.367

23 Madhya Pradesh 4718 1449.213 0.366

24 Gujarat 3430 2143.533 0.345

25 Daman and Diu 128 2196.510 0.273

26 Dadra and Nagar Haveli 192 1901.413 0.335

27 Maharashtra 8041 2323.568 0.391

28 Andhra Pradesh 6898 2094.464 0.345

29 Karnataka 4096 2117.983 0.399

30 Goa 448 2700.791 0.306

31 Lakshadweep 192 3094.633 0.396

32 Kerala 4460 3014.732 0.431

33 Tamil Nadu 6647 2122.480 0.357

34 Pondicherry 576 3086.998 0.339

35 Andaman and Nicobar Is. 567 3937.967 0.347

All India 101,717 1939.779 0.378

Data available for different states for 68th round (2011–2012)

123



Quantifying invariant features of within-group inequality…

Table 5 Number of households,
average per capita consumption
expenditure E(x), Gini index for
India

Filter #Households E(x) Gini

ST 13,403 1601.763 0.338

SC 15,652 1507.782 0.335

OBC 39,721 1800.488 0.360

Other castes 32,938 2450.539 0.391

Hinduism 77,036 1935.365 0.384

Islam 13,274 1698.742 0.347

Christianity 6930 2223.477 0.357

Other religions 4477 2291.247 0.359

Rural 59,693 1525.498 0.322

Urban 42,024 2528.244 0.386

Data available religions, caste as
well as urban–rural divide for
68th round (2011–2012)
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