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Financial fluctuations anchored 
to economic fundamentals: A 
mesoscopic network approach
Kiran Sharma1, Balagopal Gopalakrishnan2, Anindya S. Chakrabarti3 & Anirban Chakraborti1

We demonstrate the existence of an empirical linkage between nominal financial networks and the 
underlying economic fundamentals, across countries. We construct the nominal return correlation 
networks from daily data to encapsulate sector-level dynamics and infer the relative importance of the 
sectors in the nominal network through measures of centrality and clustering algorithms. Eigenvector 
centrality robustly identifies the backbone of the minimum spanning tree defined on the return 
networks as well as the primary cluster in the multidimensional scaling map. We show that the sectors 
that are relatively large in size, defined with three metrics, viz., market capitalization, revenue and 
number of employees, constitute the core of the return networks, whereas the periphery is mostly 
populated by relatively smaller sectors. Therefore, sector-level nominal return dynamics are anchored 
to the real size effect, which ultimately shapes the optimal portfolios for risk management. Our results 
are reasonably robust across 27 countries of varying degrees of prosperity and across periods of market 
turbulence (2008–09) as well as periods of relative calmness (2012–13 and 2015–16).

The structure of a complex network comprising dissimilar units of a system interacting with each other, affects the 
dynamics of the system and provides deeper insight about the functionality of the system, its evolution, and the 
role of individual or modular units. Thus, network analysis has become a primary tool in the fields as diverse as 
systems biology, ecology, epidemiology, sociology, economics and finance1. A modern economy can be pictured 
as a network, comprising multiple sectors specialized for producing different sets of goods and services, which 
exhibit high degree of inter-connectedness arising out of the dynamic nature of the underlying system. There are 
two levels of connectedness that we observe across sectors. At the nominal level, the fluctuations of returns from 
the sectoral indices show the degree of return co-movements across sectors. At the production level, the flow of 
goods and services across sectors gives rise to dispersion in relative sizes of these sectors.

Widespread existence of bubbles in financial markets and extreme movements of return series indicate that 
the relationship between macroeconomic fundamentals and the asset prices is unstable2. The ‘excess volatility 
puzzle’ in the stock markets refers precisely to this disconnect between volatility of asset returns and move-
ments of the underlying fundamentals3. Recent research emphasizes the roles played by bounded rationality as 
being important causal factors for the observed disconnect4. In this paper, we present an alternative view that 
the co-movements in financial assets are anchored to the corresponding macroeconomic fundamentals. Thus, 
nominal returns from individual assets might drift far from what can be predicted using expected cash-flow, 
while the joint evolution of the co-movements of returns are still related to aggregate size variables like market 
capitalization, revenue or number of employees.

In the following, we study the economy at the mesoscopic level. There are some well known regularities at dif-
ferent levels of granularity. At the micro level, firm size distributions show power law decays5 and bi-exponential 
growth size distributions6. Existence of a scaling relationship between size of the firms and the corresponding 
volatility is also known6. At the macro level, similar features are seen, for example, between country size and 
volatility7. These suggest that there might be universal features of growth processes of economic entities (see also 
Lee et al.8). Gabaix7 further argued that the dispersion in relative sizes of firms contributes substantially to the 
aggregate volatility of an economy, providing a link from the micro level to the macro level. A complementary 
view has emerged from the network literature that the dynamics at the intermediate sectoral level could play an 
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important role in shaping the aggregate macro-level dynamics9. The economy at the meso level identifies with the 
aggregate production process, while being granular enough to capture the network structure of co-movements in 
return fluctuations across sectors.

To study the topology of the return correlation network, we construct correlation matrices from sectoral indi-
ces for 27 countries, and apply two commonly used clustering algorithms, viz., minimum spanning tree (MST 
hereafter) and multi-dimensional scaling (MDS hereafter), to group sectors based on their co-movements. The 
influence of the sectors in the whole network can be found by using eigenvector centrality, which is able to handle 
both directed as well as weighted graphs10. In this paper, we propose a method to find a binary characterization 
of the ‘core-periphery’ structure by using a modification of the eigenvector centrality. Such classification of the 
sectors according to whether they belong to the core or the periphery, allows us to pin down exactly which sectors 
are driving the market correlations. We show that those sectors identified as core by the centrality measure, also 
constitute the backbone of the MST and cluster very closely in the MDS maps, thereby confirming the robustness 
of our method of extraction of the core-periphery structure.

To establish the connection between the financial network and the underlying production process, we regress 
the eigenvector centrality measure on sector sizes defined with three different metrics, viz., market capitalization, 
revenue and employment, all aggregated at the sectoral level. Market capitalization is our primary variable of size 
as this has the most extensive coverage across countries and time. The results across 27 countries clearly indicate 
that the dispersion in economic size explains the variation in the dispersion of sectoral centralities in the return 
correlation matrix. This is the primary finding of our paper, as it establishes the linkage between the economic 
fundamentals and the fluctuations of the return series.

Finally, we study the risk diversification of a portfolio comprising sectoral indices, based on the eigenvector 
centralities. For the sake of simplicity, we use a rudimentary Markowitz portfolio allocation problem and show 
that the core sectors, i.e., the ones with sufficiently high centralities, do not usually appear in a minimum vari-
ance portfolio. Intuitively, very large sectors contribute significantly to the movement of the return correlations 
and they constitute the ‘market factor’ of correlations. Hence, for reduction of the volatility of the portfolio, the 
weights assigned to such sectors contributing to the aggregate risk are necessarily minimized.

We perform statistical tests on a comprehensive list of 27 countries that includes developed as well as devel-
oping countries across five continents, totaling 65 sectors in the financial economies. We base our analyses on a 
recent and relatively calm period (2015–16), an intermediate period (2012–13) and then compare and contrast 
with a volatile period (2008–09), in order to check the robustness of our findings across time. We show that the 
2015–16 and 2012–13 periods give very consistent results (25 out of 27 countries are in expected directions); 
2008–09 period is also largely consistent (22 out of 26), although there are some aberrations, as the number of 
statistically insignificant relationships increases.

Results
Core-periphery Structure and Sectoral Dynamics.  Given the return correlation matrix ρ, we com-
puted the modified eigenvector centralities to find the core sectors of the countries. To visualize the co-move-
ments and clusters of sectors based on return correlations, we applied two clustering algorithms, viz., MDS and 
MST. Figure 1 shows the MST; Fig. 1 Left Inset shows that using the eigenvector centrality, we can identify that out 
of 10 sectors of the USA, 5 sectors constitute the core of the economy, viz., Finance (FN), Information Technology 
(IT), Industries (ID), Basic Materials (BM) and Consumer Discretionaries (CD) (see Table 1 in Materials and 
Methods for names of the sectors); Fig. 1 Right Inset shows the MDS. The MST generates a core-periphery struc-
ture based on minimizing the distance between correlated sectors, and since it is a hierarchical clustering method, 

Figure 1.  Results for USA: Identification of the sectors that are in the core (red) and periphery (pale green) 
of the minimum spanning tree, where the nodes represent different sectors; sectoral abbreviations given in 
the Table 1 in Materials and Methods. Left Inset: Eigenvector centralities of ρ32. Right Inset: Multidimensional 
scaling, where the different sectors are plotted as coordinates in a map.
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similar sectors can be found close to each other (or in one branch). Similarly, closer the sectors are placed on the 
MDS map, more correlated (similar) they are; farther they are placed on the map, less correlated they are.

There are two major observations: First, MST shows that all core sectors form a chain or the “backbone” in 
the tree. Similarly, the MDS also reiterates most of the information: the core sectors, as identified by the modi-
fied eigenvectors centrality, belong to one cluster in the MDS; all sectors with negligible centrality are spaced in 
the periphery in the MDS. Thus, our method of the modified centrality to extract the core sectors is reinforced 
by the clustering algorithms, indicating the robustness of our findings. Second, the MST built from the return 
correlation matrix, contains information about the actual production structure of the economy. For example, 
Energy (EG) is most closely related to Basic Materials (BM), which in turn is related to Industries (ID), and so 
on. On the other end of the MST, Consumer Staples (CS) is connected to Telecom (TC) sector, Utilities (UT) and 
Consumer Discretionary (CD). Again, this qualitative feature is quite robust, as observed in almost all the coun-
tries analyzed. In Fig. 2, we present similar MSTs (with the core/backbone colored in red) for 20 other countries, 
elucidating the core-periphery structures. We complement the analysis with subgraph centrality measure11 as well 
as usage of disparity filter12 to extract the backbone of the networks (see Results in Supplementary Information).

Figure 3 shows the sectoral dynamics and the core-periphery structure for all countries. As can be seen, there 
are at least two sectors in the core for all countries, but the core-periphery structure often changes with time 
(when compared for the periods 2008–09 and 2015–16). Figure 4 shows the comparison among the modified 
eigenvector centralities for the years 2008–09 and 2015–16, for the four countries: United Kingdom, India, Japan, 
and United States of America, as examples. The relative importance of each sector can be compared for the vola-
tile and calm period. Certainly, the sectoral dynamics are interesting to note in the different countries, and may 
help in taking important policy decisions in economic growth and development. Here, we note that the above 
discussion is based on the core-periphery distinction arising out of the eigenvector centralities (see Materials and 
Methods). To check robustness, we have also computed the core-periphery structure by using the disparity filter 
algorithm developed by Serrano et al.12. All results can be found in the Supplementary Information and predic-
tions of that algorithm matches to a large extent with our findings.

Financial Fluctuations and Economic Fundamentals.  Most importantly, we now show that the 
core-periphery structure based on the return correlation matrix, ρ, has a stable relationship with the relative sizes 
of the sectors. We study the variations in the eigenvector centralities of the return correlation matrix, and exploit 
the variations in three major variables, viz., aggregate market capitalization, aggregate revenue and aggregate 
employment. We have described how we constructed the sector-level data by aggregating the company-level data 
corresponding to each sector in each country, in the Materials and Methods section. For finding the effect of size 
on centrality, we execute the following regression,

β β ε= + +centrality size , (1)i i i0 1

Labels Sectors Labels Sectors Labels Sectors

AF Agro & Food Industry EM Electrical Machinery OG Oil and Gas

AG Agriculture EU Energy & Utilities PC Property & Construction

AM Automobiles FB Food & Beverages PE Power & Energy

BC Building & Construction FN Finance PG Personal Goods

BF Banks & Finance GD Gold PH Petrochemical

BFT Beverage, Food & Tobacco HC Health Care PL Plantation

BK Bank HG Household Goods PR Property

BM Basic Materials HT Hotel & Tourism PSU Public Sector Undertaking

BR Basic Resources ID Industries RB Rubber

CC Consumer & Cyclical IF Infrastructure RE Real Estate

CD Consumer Discretionary IP Industrial Production RT Retail

CD1 Consumer Durables IS Insurance RY Realty

CE Cement IT Information Technology SU Securities

CG Consumer Goods MF Manufacturing TC Telecom

CG1 Capital Goods MG Mining TD Trade

CH Chemicals MI Multi Investments TE Transport & Equipment

CM Construction & Materials MID Miscellaneous Industries TP Transport

CN Construction MO Mining & Oil TS Trade & Services

CP Consumer Products MOT Motors TX Textiles

CS Consumer Staples MP Metal Products UT Utilities

CSR Consumer Services MP1 Media & Publishing WS Wholesale

EG Energy OC Oil & Coal Products

Table 1.  Abbreviations of the 65 sectors analyzed.
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for three snapshots covering the last decade (2008–09, 2012–13 and 2015–16, see Supplementary Information), 
where β0 and β1 are constant terms and εi denotes error terms. The ordinary least squares method minimizes the 
sum of the squared errors, to estimate the coefficients β0 and β1. Throughout our regression analyses, we have 

Figure 2.  Minimum spanning trees for 20 countries out of the 27 countries (shown in peach) that are being 
studied across the globe. The core sectors are colored red (darker shade), while the sectors in the periphery are 
in pale green (lighter shade); sectoral abbreviations given in the Table 1 in Sec. Materials and Methods. The 
world map has been generated with the open source software R-Statistical Computing and Graphics (version 
3.3.2 (2016-10-31)), using the in-built library(rworldmap).

Figure 3.  Sectoral dynamics and core-periphery structure: Chart of the 65 sectors (horizontal axis) in the 27 
countries (vertical axis), showing the evolution of the core-periphery structure over two snapshots, 2008–09 
and 2015–16. Interpretation: x → y implies x in 2008–09 became y in 2015–16 (x, y ∈ {core, periphery}). Visual 
inspection reveals that Finance (FN) and Industries (ID) sectors are frequently occurring in the core across 
almost all countries. Sectoral abbreviations given in the Table 1 in Materials and Methods. Also, countries like 
Canada (CAN), Finland (FIN), France (FRA), Philippines (PHL) and Sweden (SWE) maintain a stable core-
periphery structure with no change, whereas the rest of the countries show different degrees of change in the 
core-periphery structure.
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used standardized variables: ([variable − mean(variable)]/standard deviation(variable)) so that we can compare 
estimated β1 for different size variables. We have used eigenvector centrality in our basic framework to estimate 
Eq. 1. To check robustness of our findings, we have also estimated subgraph centrality11. The results are consistent 
with the estimates done with eigenvector centrality (see Supplementary Information).

In Fig. 5, we plot the linear regressions of scaled eigenvector centrality with the (scaled) market capitalization, 
revenue and employees for the USA. We have performed similar analyses for the other countries, and tabu-
lated the results in the Supplementary Information Tables S2–S10, which suggest that generally, such a mapping 
exists for almost all countries. Figure 6 shows the results of regressing the sectoral eigenvector centralities on the 
sector-level aggregate market capitalization, revenue, and employees, for the years 2008–09 and 2015–16. As we 

Figure 4.  Sectoral dynamics and robustness: The comparison of the eigenvector centralities for the years 2008–
09 (light orange) and 2015–16 (dark green) for four countries. Upper Left: United Kingdom (GBR), Upper Right: 
India (IND), Lower Left: Japan (JPN), Lower Right: United States of America (USA).

Figure 5.  Results for USA: Linear regressions of scaled eigenvector centrality with scaled market capitalization 
(orange filled circles), scaled revenue (cyan filled squares), and scaled number of employees (magenta filled up-
triangles). The best fits (linear regressions) are plotted as lines for market capitalization (orange solid), revenue 
(cyan long dashed) and employees (magenta short dashed).

http://S2
http://S10
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see in the Upper panel, for 2015–16, the estimated coefficients β1 for market capitalization are positive for 25 out 
of 27 countries (11 of them are statistically significant at 10%). The two countries which have very mildly nega-
tive relationships, are Greece (significant) and South Africa (insignificant). We have not plotted 2012–13 data in 
order to keep the figure clean. As can be checked from the Supplementary Information, estimated β1 is positive 
for 25 out of 27 countries (7 of them are siginificant at 10%). For 2008–09, estimated β1 is positive for 22 out of 26 
countries (3 of them are significant at 10%). Belgium, Switzerland, South Africa and Sri Lanka have negative rela-
tionships. The Middle panel shows that in 2015–16, the estimated coefficient β1 for revenue is positive for 23 out 
of 26 countries (9 are significant at 10%). The three countries which have negative (and statistically insignificant) 
relationships, are Greece, Qatar and United Kingdom. For 2008–09, the coefficient β1 is positive for 22 out of 26 
countries (9 are significant at 10%). Finally, the Lower panel shows that for 2015–16, β1 for employees was positive 
for 23 out of 24 countries (9 are significant at 10%) The only country which has negative (and statistically signifi-
cant) relationship, is Greece. For 2008–09, the coefficient β1 is positive for 21 out of 24 countries (5 are significant 

Figure 6.  Comparison of the regression results (estimates of β1 using Eq. 1) to explain variation in the sectoral 
eigenvector centralities by the variation in sector-level macro data. Upper: market capitalization, Middle: 
Revenue, Lower: Employees, for the years 2008–09 and 2015–16. Detailed estimation results are given in the 
Supplementary Information Tables S2–S10.

http://S2
http://S10
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at 10%). To check robustness of our results, we have also computed subgraph centrality following Estrada et 
al.11. The regression results can be found in the Supplementary Information (Tables S11–S19) and the results are 
very close to the ones computed with eigenvector centrality. Finally, we present another robustness check with 
degree centrality or node strength, which is a first order approximation of eigenvector centrality (see Materials 
and Methods for an explanation as to why node strength for a weighted network approximates the eigenvector 
centrality), being positively related to size variables. Regression results have been given in the Supplementary 
Information (Tables S20–S28). All results, by and large, corroborate our main observations and findings stated 
above. Thus combining all modifications of the centrality measure in the basic regression model, we find that 
eigenvector centrality is a robust specification to model the financial network.

There is already an existing finding that centralities in input-output networks are closely related to the rela-
tive sizes of the corresponding nodes (see Acemoglu et al.9). However, our finding is complementary in nature 
because here we show that the centralities based on nominal return fluctuations can be directly mapped to the rel-
ative size, i.e., the return network is also very closely related to the underlying size effects. An immediate corollary 
is that the core sectors of the return correlation network are also economically big, and hence, the market effect 
of the correlations are driven by those sectors which have very high market capitalization (or other indicators like 
revenue and employment). It can also be easily verified that the correlation between a sector’s size and its average 
co-movement with other sectors in the financial market is also high (see Results in Supplementary Information 
Tables S29–S31). Next, we discuss the relationship between the eigenvector centralities across sectors and the 
riskiness of a portfolio.

Constructing the Minimum Risk Portfolio.  In this part, we study how the sectoral centralities influence 
the aggregate risk of a portfolio. For the purpose of simple exposition, we compute the benchmark model of 
Markowitz portfolio selection with the sectoral return data. Assuming rational investors with risk-aversion, the 
investors will minimize

′Σ − Θ ′w w R w, (2)

with respect to the weight vector w, where Σ is the covariance matrix of the sectoral returns, R′ is the expected 
return vector, and Θ is a parameter, which denotes the risk appetite of the investor. We set a short-selling con-
straint (wi ≥ 0) and Θ equal to zero for finding the minimal risk portfolio, which will entail a convex combination 
of sectoral returns (the other extreme would lead to a corner solution). Our main observation is that the optimal 
weight vector, w*, is negatively related to the eigenvector centralities, i.e., if a sector is very “central” in the return 
correlation network, then it is less likely to appear in the optimal portfolio with minimum risk (and no short 
selling). We demonstrate this in a naive way for each country: We construct threshold values θe and θp, as a fixed 
percentage (say n%) of the coefficient of variation (standard deviation/mean), for both the eigenvector centralities 
as well as the minimum risk portfolio weights. These threshold values θe and θp would determine, respectively, 
whether the sector is central or not (i.e., 0 or 1), or whether the corresponding sector would appear in your opti-
mal portfolio or not (i.e., 0 or 1). So, for the vector of sectors, we would have two strings of 0’s or 1’s corresponding 
to the centrality vector (EVC) and the optimal weight vector (PWT), respectively. The Hamming distance D 
between any two bit-strings of equal length, is the number of positions at which the corresponding bits are differ-
ent. So, the Hamming distance between the two strings EVC and PWT would tell how important the observation 
is for a particular country; the higher the value of D, the better the conformity. The sector which is central (i.e., 
1) would not appear in your portfolio (i.e., 0), and so for any country the ideal finding would be that D is unity. 
The choice of the threshold(s), θe and θp, equaled by the percentage(s) (n) of the coefficient of variation(s) in the 
vectors EVC and PWT, would be important for determining the Hamming distance D between the strings for 
any country (see Fig. 7 (Upper) for the USA). We can optimize the value of D against the percentage n, for all the 
countries, as shown in Fig. 7 (Lower). We found that n = 2, i.e., 2% was an optimal threshold value θe for most 
countries, which we then used to distinguish between the core and periphery sectors. Combined with the finding 
that core sectors in the return correlation network are bigger in size, the above finding implies that peripheral 
sectors contribute to lower the risk of a diversified portfolio.

Summary and Conclusion
In this paper, we have analyzed financial and economic data for 27 countries at the sector level and provided a 
methodology to extract the core-periphery structure of the correlation networks in a binary fashion. The result-
ing generic rule of thumb was that economic size explained correlations across financial assets. We attribute 
significant importance to this finding as it provides a way to exactly pin down the sectors which are main drivers 
of financial fluctuations through the size effect. The way return series are constructed from price data by log dif-
ferencing, the size differential of the prices across the sectoral indices should disappear due to the normalization. 
It is known that volatility of variables like firm-growth rates has a scaling relationship with size6. In a comparable 
context, Eisler et al.13 had shown that persistence of financial time series can be positively correlated to market 
capitalization. However, both of such features are specific to one time series only. The contribution of this paper 
is to show that even dispersion in co-movements across financial time-series of multiple sectors can also be 
explained by the underlying size factors.

The fact that the co-movements are still tied to the fundamentals after normalization by the average size is 
therefore intriguing. Our results suggest this finding is considerably robust across countries. An illuminating 
exception is Greece, which shows an exactly opposite relationship, perhaps due to its weak economic funda-
mentals along with severe crises in the financial markets in the recent times. In both volatile and calm periods, 
economically large (either in terms of market capitalization or revenue or employment) sectors in Greece are at 
the periphery of the return correlation networks, which constitutes an inverted relationship between the economy 
and the financial networks.

http://S11
http://S19
http://S20
http://S28
http://S29
http://S31
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We showed that the variation in centrality in the return correlation matrix across sectoral indices, can be 
explained by the size dispersion across the sectors. This finding indicates that financial fluctuations are mapped to 
the macroeconomic fundamentals. From the perspective of portfolio optimization, we showed that the very big 
sectors that are also highly central in the return network, rarely appear in a risk-minimizing portfolio. Essentially, 
such sectors constitute the main drivers of market-wide fluctuations. In summary, our study sheds light on: (a) the 
mapping between the joint evolution of the financial variables and the underlying macroeconomic fundamentals, 
and (b) extracting information about the individual influences on aggregate risk from sector-level, disaggregated 
time-series data.

We have also shown that the relative importance of the sectors may change substantially over time although 
some sectors like finance and industry are at the core of a large fraction of countries. In general, our results indi-
cate that the core may not be very stable. Possible reasons could be sectoral competition in terms of productivity 
and innovation and the resultant evolution14. The emergence of the core-periphery structure changes the com-
plexity of the financial markets and has implications of the pricing of risk in the economy15. Our work indicates 
the advantages of using a binary characterization to reduce the computational burden by introducing proper 
identification of the country-specific core sectors, as opposed to considering the full network.

To conclude, we note that the recent applications of network theory in the macroeconomics literature has 
focused significantly on studying the dynamics of real economic quantities16, whereas the relevant finance litera-
ture has focused on the dynamics of nominal quantities17–19. The present work may provide a linkage between the 
above two. Thus, we make the point that the oft-quoted quips ‘too-big-to-fail’20 and ‘too-interconnected-to-fail’21 
may not be as different as are currently thought of.

Materials and Methods
Data Description.  We have used the sectoral price indices from the Thomson Reuters Eikon database22, 
within the time frames January 2008– December 2009, October 2012– September 2013 and October 2014– 
September 2016. We have analyzed the data for a total of 65 sectors (see Table 1 for sectoral abbreviations) for 
the following countries: (1) AUS- Australia (2) BEL- Belgium (3) CAN- Canada (4) CHE- Switzerland (5) DEU- 
Germany (6) DNK- Denmark (7) ESP- Spain (8) FIN- Finland (9) FRA- France (10) GBR- United Kingdom (11) 
GRC- Greece (12) HKG- Hong Kong (13) IDN- Indonesia (14) IND- India (15) JPN- Japan (16) LKA- Sri Lanka 

Figure 7.  Upper Left: Relationship between the bit-strings of sectoral centralities (EVC) and their 
corresponding inclusion in the portfolio (PWT) for the different sectors of the USA. The threshold values θe and 
θp (as 2% of the coefficient of variations of EVC and PWT, respectively) would determine, whether the sector 
is central or not (EVC is 0 or 1), or whether the corresponding sector would appear in the optimal portfolio or 
not (PWT is 0 or 1). Upper Right: The Hamming distance D computed from the bit-strings EVC and PWT for 
USA, against the different values of n (percentage) of the coefficient of variations of EVC and PWT, respectively, 
which determine the threshold values θe and θp. Lower: The Hamming distance D computed from the bit-strings 
EVC and PWT, against the different values of n (percentage), for the different countries, plotted as a 3D-bar.
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(17) MYS- Malaysia (18) NLD- the Netherlands (19) NOR- Norway (20) PHL- Philippines (21) PRT- Portugal 
(22) QAT- Qatar (23) SAU- Saudi Arabia (24) SWE- Sweden (25) THA- Thailand (26) USA- United States of 
America and (27) ZAF- South Africa, spread across the continents of the Americas, Europe, Africa, Asia and 
Australia. The time series data on the real variables, such as market capitalization, revenue and the number of 
employees within each sector, are also available in the same database although at the company level rather than at 
the sectoral level. Hence, for our purposes of constructing sector-level macro aggregate variables, we collected the 
companies listed within each sector for one particular country, and then aggregated the relevant company-spe-
cific variables across all such companies within the corresponding sector. We find that the US economy is a good 
representative of the empirical results. Note that due to the extensive requirement of data coverage to carry out the 
analysis, data for a few countries were not available in some periods (see Supplementary Information). However, 
such missing data are quite sparse.

Correlation Coefficient and the Distance Metric.  Returns series are constructed as 
ri(τ) = lnPi(τ) − lnPi(τ − 1), where Pi(τ) is the adjusted closure price of sector i in day τ. Then the equal time 
Pearson correlation coefficients between sectors i and j is defined as ρij = (〈rirj〉 − 〈ri〉〈rj〉)/σiσj, where 〈...〉 rep-
resents the expectation and σk represents standard deviation of the k-th sector. We use ρ to denote the return 
correlation matrix.

We construct the distance matrix from the correlation coefficients using the following transformation, 
ρ= −d 2(1 )ij ij

, where 2 ≥ dij ≥ 0. All elements of the matrix dij are “ultrametric”23–25 and d to denote the dis-
tance matrix.

Eigenvector Centrality.  To analyze the influence of a sector in the whole network, the ranking of the sectors 
is measured by eigenvector centrality. It is not necessary that a sector with high eigenvector centrality is highly 
linked, for the sector might have few but important links. Given a matrix AN×N, the eigenvector centrality is 
defined as a vector xN×1, which solves

λ=Ax x, (3)m

where λm is the dominant eigenvalue of A.
In general, almost all pair-wise correlations are positive. However, in rare cases (e.g., the Gold sector in 

Canada), certain sectors show mild negative correlations with other sectors. To account for those cases, we con-
sider the absolute value of the correlation matrix |ρ| for computing the eigenvector centrality, since according to 
the Perron-Frobenius theorem, a real square matrix with positive entries has a unique largest real eigenvalue and 
the corresponding eigenvector has strictly positive components. Finally, we normalize the centrality vector x such 
that ∑ixi = 1.

We have also considered degree centrality or node strength, which is a first order approximation of eigenvector 
centrality, as a measure of influence in the financial network1. To see why degree centrality for a weighted network 
approximates the eigenvector centrality, let us imagine a Markov process given x(t+1) = Axt, where A denotes the 
transition matrix. If the process converges, then the solution solves x∞ = Ax∞ implying that the dominant eigen-
vector is the steady state solution. Note that from a network theoretic view, x∞ is also the eigenvector centrality 
for an adjacency matrix A. Now consider x0 being a vector of ones. Then x1 (=Ax0) is clearly the degree centrality. 
Thus degree centrality x1 is the first order approximation of the asymptotic result eigenvector centrality x∞. As 
we did for the eigenvector centrality, we normalize the node strength vector such that the sum across sectors is 1.

Subgraph Centrality.  To complement the analysis with eigenvector centrality, we also compute another 
centrality measure – subgraph centrality11. At the country level, one can also compute the Estrada index26, which 
is a topological index for a graph. Given a sequence of eigenvalues {λj}j∈N, the Estrada index of a network N is 
defined as

∑ λ= .
=

EE N exp( ) ( )
(4)i

N

i
1

Let us denote the eigenvector associated with the i-th eigenvalue λi by vi where vi = [vi(1), …, vi(N)]. Then the 
subgraph centrality of the j-th node is defined as

∑ λ= .
=

SC j v j exp( ) ( ) ( )
(5)i

N

i i
1

2

Determining Core-Periphery Structure.  To identify the core-periphery structure there are several filter-
ing methods existing in the literature. All filters have limitations and one has to consider them in relation to the 
problem under analysis.

We first consider a modification of the centrality measure to identify the core-periphery structure in a binary 
fashion. We give a transformation to the correlation matrix such that the weak correlations acquire asymptotically 
zero weights and the strong correlations acquire enhanced weights, while maintaining positive signs. Hence, 
instead of the level values of the correlation coefficients, we consider ρc, where c is a sufficiently large even num-
ber. In our case c = 25 = 32, the lowest value that gives reasonably good estimates of the backbone of the mini-
mum spanning tree. We thus present results for c = 32 although, in principle, one can use higher values as well. 
To determine the core sectors of a country, we then construct a threshold value θe, as a fixed percentage of the 
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coefficient of variation (standard deviation/mean) for the eigenvector centralities. If the sectoral centrality is 
above the threshold value θe, then the sector is considered core, otherwise not.

To provide a complementary picture to the proposed algorithm of the core-periphery structure with the eign-
vector centrality, we have also used an algorithm proposed by Serrano et al.12 to extract the backbone of the 
networks. The disparity filter algorithm extracts the network backbone by considering the relevant edges at all the 
scales present in the system and exploiting the local heterogeneity and local correlations among the weights. The 
disparity filter has a cut-off parameter αc, which determines the number of edges that are reduced in the original 
network. The filter however, preserves the cutoff of the degree distribution, the form of the weight distribution, 
and the clustering coefficient. These comparative results can be found in the Supplementary Information.
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