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Mode-coupling theory is an approach to the study of complex behavior in the supercooled liquids

which developed from the idea of a nonlinear feedback mechanism. From the coupling of slowly

decaying correlation functions the theory predicts the existence of a characteristic temperature Tc

above the experimental glass transition temperature Tg for the liquid. This article discusses the various

methods used to obtain the model equations and illustrates the effects of structure on dynamics and

scaling behavior over different time scales using a wave-vector-dependent model. It compares the

theoretical predictions, experimental observations, and computer simulation results, and also

considers phenomenological extensions of mode-coupling theory. Numerical solutions of the model

equations to study the dynamics from a nonperturbative approach are also reviewed. The review looks

briefly at recent observations from landscape studies of model systems of structural glasses and their

relation to the mode-coupling temperature Tc. The equations for the mean-field dynamics driven by

the p-spin interaction Hamiltonian are similar to those of mode-coupling theory for structural glasses.

Related developments in the nonequilibrium dynamics and generalization of the

fluctuation-dissipation relation for the structural glasses are briefly touched upon. The review ends

with a summary of the open questions and possible future direction of the field.
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I. INTRODUCTION

Almost every liquid undergoes a glass transition when
supercooled below its freezing temperature, bypassing
the formation of the crystalline state. The rapidly in-
creasing viscosity of the liquid is a generic feature of the
supercooled state. Many different expressions have been
used to fit the experimentally observed temperature de-
pendence of the viscosity. These include the standard

Arrhenius form �exp�A /T�, the Vogel-Fulcher form

�exp�B / �T−TVF��, and the power-law behavior ��T

−To�−�. Experimentally the temperature at which the

viscosity reaches the value of 1014 P has usually been
identified with the so-called calorimetric glass transition

temperature Tg. An interesting plot of the data of glassy

relaxation was made by Angell �1984� of viscosity � vs
inverse temperature Tg /T scaled with Tg �see Fig. 1�.
The increase of viscosity in different materials occurs in

different ways. One extreme is a slow growth of � with
lowering of temperature T over the temperature range

T�Tg followed by a very sharp increase within a small

temperature range close to Tg. In a number of systems
described as fragile liquids a crossover in the tempera-

ture dependence of the viscosity � was observed. A
more uniform increase is seen over the whole tempera-

ture range for strong liquids like B2O3 or SiO2. This
behavior has been quantified by defining a fragility pa-

rameter m as the slope of the viscosity-temperature

curve as m=d ln � /dT at T=Tg �Böhmer et al., 1993�.

Thus, for example, m=81 �for o-terphenyl� and m=20

�for SiO2� denote two extreme cases of fragile and
strong systems.
Understanding the transformation of a normal liquid

to an amorphous-solid-like state from the basic laws of
statistical physics has been an area of strong research

interest in recent times. The dynamics of the liquid state
at the microscopic level are described by the classical
equations of motion of a very large number of particles.
Early theoretical work on the dynamics of the fluid state
involved to a large extent the study of kinetic theories of
hard spheres, following the approach of Maxwell and
Boltzmann �Chapman and Cowling, 1970�. Transport
phenomena in the liquid were studied from the Boltz-
mann equation with Enskog corrections, which included
only short-range uncorrelated binary collisions of the
constituent particles. Theories of the fluid that consider
only the time evolution of the microscopic states con-
trolled by uncorrelated collisions lead to the conclusion
that the fluctuations from equilibrium decay with an ex-
ponential dependence on time. Thus typical time-
dependent measurements on the fluid could be under-
stood in terms of simple exponential relaxations.
Deviations from such behaviors appeared in subsequent
studies. Typical examples of such cases are the density
expansion of transport coefficients �Zwanzig, 1963; Ka-
wasaki and Oppenheim, 1965; Ernst et al., 1969� discov-
ered to be nonanalytic, or computer simulation studies
of hard-disk or hard-sphere fluids �Alder and Wainright,
1967, 1970� showing that the correlation of the velocity

v�t� of a tagged particle with the same quantity at an

earlier time follows with a power-law decay �t−d/2 in d
dimensions�. The traditional kinetic theories dealing
with uncorrelated collisions of fluid particles were ex-
tended to study correlated motions in terms of ring and
repeated-ring collision events between the fluid par-
ticles. The origin of these observed behaviors were col-
lective or hydrodynamic effects �Zwanzig and Bixon,
1970; Pomeau and Résibois, 1975� on a semimicroscopic
level. As the liquid is increasingly supercooled below its
freezing point and approaches the glass transition, the
role of correlated motions of the fluid particles becomes

FIG. 1. Viscosity of various glass-forming liquids vs Tg /T. Tg is

defined as the temperature at which the viscosity reaches

1014 P. From Angell, 1984.
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