Mode-coupling theory and the glass transition in supercooled liquids

Shankar P. Das*

School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India

(Published 15 October 2004)

Mode-coupling theory is an approach to the study of complex behavior in the supercooled liquids which developed from the idea of a nonlinear feedback mechanism. From the coupling of slowly decaying correlation functions the theory predicts the existence of a characteristic temperature T_c above the experimental glass transition temperature T_g for the liquid. This article discusses the various methods used to obtain the model equations and illustrates the effects of structure on dynamics and scaling behavior over different time scales using a wave-vector-dependent model. It compares the theoretical predictions, experimental observations, and computer simulation results, and also considers phenomenological extensions of mode-coupling theory. Numerical solutions of the model equations to study the dynamics from a nonperturbative approach are also reviewed. The review looks briefly at recent observations from landscape studies of model systems of structural glasses and their relation to the mode-coupling temperature T_c . The equations for the mean-field dynamics driven by the *p*-spin interaction Hamiltonian are similar to those of mode-coupling theory for structural glasses. Related developments in the nonequilibrium dynamics and generalization of the fluctuation-dissipation relation for the structural glasses are briefly touched upon. The review ends with a summary of the open questions and possible future direction of the field.

CONTENTS

I.	Introduction			
II.	Cl	assical Liquids: Some Preliminaries	788	
	A. Equilibrium structure of the liquid			
	В.	789		
		1. Neutron-scattering experiments	789	
		2. Light-scattering experiments	789	
	C.	Linear response to perturbations	790	
		1. Fluctuation-dissipation theorem	790	
		2. Linear transport coefficients	790	
III.	Сс	ollective Modes in Classical Liquids	791	
	А.	Hydrodynamic description	791	
		1. Conservation laws and balance equations	791	
		2. Macroscopic hydrodynamics	791	
		a. Local equilibrium distribution	791	
		b. Dissipative dynamics	792	
		c. Hydrodynamic fluctuations	792	
	В.	Beyond conventional hydrodynamics	793	
		1. Generalized hydrodynamic modes	793	
		a. The projection operator	793	
		b. The hard-sphere liquid	794	
		2. Dynamics in the Markovian approximation	795	
IV.	Sti	rongly Correlated Liquid	795	
	A.	Mode-mode coupling: Some physical insight	795	
	В.	The renormalized theory	796	
		1. Memory function approach	797	
		2. Nonlinear dynamics of collective modes	797	
		a. An example: Incompressible fluid	798	
		b. Compressible liquids	798	
		c. Renormalized transport coefficients	798	
		Dynamic density-functional model	800	
V.	Se	lf-Consistent Mode-Coupling Theory	801	

	Α.	The one-component liquid	801
		1. The schematic model	801
		a. Relaxation over different time scales	801
		b. The nonergodic phase $\Delta_0 \ge 0$	802
		c. The ergodic phase $\Delta_0 < 0$	802
		2. Effects of structure on the dynamics	802
		a. The cusp behavior of the nonergodicity parameter	803
		b. Scaling in power-law relaxations	804
		c. The factorization property	804
		d. Alpha-relaxation scaling	805
		e. Viscoelastic behavior	805
		3. Tagged-particle dynamics	806
	В.	Extensions to more complex systems	808
		1. Mode-coupling theory for binary mixtures	808
		2. The molecular liquid	809
		a. The memory function	810
		b. The glass transition scenario	811
VI.	Ał	osence of a Sharp Transition	812
	А.	Role of current fluctuations	812
	В.	Ergodicity-restoring and "hopping" processes	814
VII.	Ev	idence from Experiments	816
	А.	The complex relaxation scenario	816
		1. Signature of the dynamic transition	816
		2. Power-law relaxations	817
		a. The critical decay	817
		b. von-Schweidler relaxation	817
		3. The α -relaxation regime	820
		a. The temperature dependence of the α peak	820
		b. The scaling in the α regime	820
	В.	The Nagel plot and mode-coupling theory	821
	C.	Glass transition in colloids	822
VIII.	Ph	enomenological Extensions of Mode-Coupling	
	Th	eory	823
	А.	Hydrodynamics of solids	823
	В.	A model for structural relaxation	825
IX.	Be	yond Mode-Coupling Theory: Nonperturbative	
	Аţ	pproach	826

^{*}Electronic address: shankar@mail.jnu.ac.in

	А.	Numerical solution of the Langevin equations	826	
		1. Nature of the relaxation	827	
		2. Dynamics in the free-energy landscape	827	
	В.	Mapping onto a lattice gas model	828	
Х.	Co	mputer Simulation Results	830	
	А.	Comparison with mode-coupling theory	830	
	В.	Mode-coupling T_c : Landscape studies	831	
	C.	Generalized fluctuation-dissipation relation	833	
XI.	Mo	ode Coupling and Spin-Glass Models	834	
	А.	<i>p</i> -spin interaction spin-glass model	834	
	В.	Nonequilibrium dynamics: Spherical model	836	
	C.	Generalization: Systems with intrinsic disorder	837	
	D.	Comparison with the structural glass problem	838	
XII.	Сс	onclusions and Outlook	839	
Ackn	owle	edgments	841	
Appendix: Deduction of the Self-Consistent Model				
	1.	Analysis of the memory function	841	
	2.	The field-theoretic formulation	842	
		a. The renormalized perturbation theory	842	
		b. Nonperturbative results	843	
		c. One-loop results	844	
		d. Simplified model in terms of the ρ field	844	
References				

I. INTRODUCTION

F

Almost every liquid undergoes a glass transition when supercooled below its freezing temperature, bypassing the formation of the crystalline state. The rapidly increasing viscosity of the liquid is a generic feature of the supercooled state. Many different expressions have been used to fit the experimentally observed temperature dependence of the viscosity. These include the standard Arrhenius form $\sim \exp(A/T)$, the Vogel-Fulcher form $\sim \exp[B/(T-T_{VF})]$, and the power-law behavior $\sim (T$ $-T_o)^{-\gamma}$. Experimentally the temperature at which the viscosity reaches the value of 10^{14} P has usually been identified with the so-called calorimetric glass transition temperature T_g . An interesting plot of the data of glassy relaxation was made by Angell (1984) of viscosity η vs inverse temperature T_g/T scaled with T_g (see Fig. 1). The increase of viscosity in different materials occurs in different ways. One extreme is a slow growth of η with lowering of temperature T over the temperature range $T > T_g$ followed by a very sharp increase within a small temperature range close to T_g . In a number of systems described as *fragile liquids* a crossover in the temperature dependence of the viscosity η was observed. A more uniform increase is seen over the whole temperature range for strong liquids like B_2O_3 or SiO₂. This behavior has been quantified by defining a fragility parameter m as the slope of the viscosity-temperature curve as $m=d \ln \eta/dT$ at $T=T_g$ (Böhmer *et al.*, 1993). Thus, for example, m=81 (for *o*-terphenyl) and m=20(for SiO_2) denote two extreme cases of fragile and strong systems.

Understanding the transformation of a normal liquid to an amorphous-solid-like state from the basic laws of statistical physics has been an area of strong research

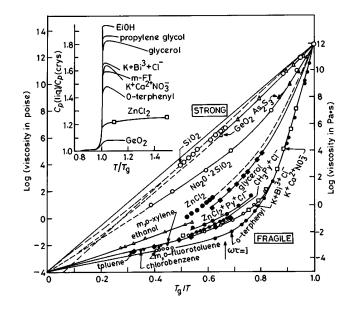


FIG. 1. Viscosity of various glass-forming liquids vs T_g/T . T_g is defined as the temperature at which the viscosity reaches 10^{14} P. From Angell, 1984.

interest in recent times. The dynamics of the liquid state at the microscopic level are described by the classical equations of motion of a very large number of particles. Early theoretical work on the dynamics of the fluid state involved to a large extent the study of kinetic theories of hard spheres, following the approach of Maxwell and Boltzmann (Chapman and Cowling, 1970). Transport phenomena in the liquid were studied from the Boltzmann equation with Enskog corrections, which included only short-range uncorrelated binary collisions of the constituent particles. Theories of the fluid that consider only the time evolution of the microscopic states controlled by uncorrelated collisions lead to the conclusion that the fluctuations from equilibrium decay with an exponential dependence on time. Thus typical timedependent measurements on the fluid could be understood in terms of simple exponential relaxations. Deviations from such behaviors appeared in subsequent studies. Typical examples of such cases are the density expansion of transport coefficients (Zwanzig, 1963; Kawasaki and Oppenheim, 1965; Ernst et al., 1969) discovered to be nonanalytic, or computer simulation studies of hard-disk or hard-sphere fluids (Alder and Wainright, 1967, 1970) showing that the correlation of the velocity v(t) of a tagged particle with the same quantity at an earlier time follows with a power-law decay $(t^{-d/2} \text{ in } d$ dimensions). The traditional kinetic theories dealing with uncorrelated collisions of fluid particles were extended to study correlated motions in terms of ring and repeated-ring collision events between the fluid particles. The origin of these observed behaviors were collective or hydrodynamic effects (Zwanzig and Bixon, 1970; Pomeau and Résibois, 1975) on a semimicroscopic level. As the liquid is increasingly supercooled below its freezing point and approaches the glass transition, the role of correlated motions of the fluid particles becomes