TC	405A
LD	40 5 A

Chemistry of Macromolecules

2 Credits

Sr.No.	Торіс	Faculty Name/ Contact Hours
A.	Equilibrium Thermodynamics	
1.	Basic concepts of thermodynamics: Energy and its importance for all processes. The relevance of thermodynamics in the study of biological processes. Basic concepts: defining a system, universe, state functions, and path functions; and their significance for understanding the biological processes. Laws of thermodynamics. Concept of enthalpy in chemical reactions. Specific heats and their significance.	KK/01
2.	Application of thermodynamic principles to biological reactions: Application of Hess' law to biologically relevant chemical reactions. Predicting which way is down hill, concept of entropy of a system. Understanding what is free about free energy. Gibbs energy and its relationship with enthalpy and entropy of a system. The biochemical standard state. Coupled biochemical reactions.	KK/01
	Reversible biochemical reactions at equilibrium. The equilibrium constant (Keq). Relationship between standard state Gibbs energy and Keq. Temperature dependence of Keq and Van't Hoff equation.	KK/01
	Types of biochemical equilibria. Ligand binding to biological macromolecules. The association/dissociation constant. Analysis of binding data.	KK/01
	Ionic product of water. Acid-base equilibria and the Henderson-Hasselbach equation. Buffers and their importance for biochemistry. pKa of amino acids and their relevance. pI and optimum pH for enzyme activity.	KK/02
	Chemical potential and ionic equilibria. Donnan membrane equilibrium and its significance. Nernst Equation and biochemical equilibrium.	KK/01
B.	Kinetics	
3. Pat trar seco diff	Basic concepts of kinetics: Path dependence of kinetics of chemical processes. Activation energy, transition states and intermediates. Rates and rate constants for first order, second order and pseudo first order reactions. Writing rate equations- the differential method and the integration method.	KK/01
	Half-life of first-and second- order reactions and their significance with examples. Principle of microscopic reversibility and its relevance.	KK/01
4.	Application of kinetics to the study of biological reactions: Writing rate equations for reversible biochemical reactions. Equilibrium versus steady state approximation in enzyme catalyzed reactions.	SSK/02
C.	Quantum mechanics and spectroscopy	
5.	A historical introduction to the field: Understanding the break between classical and quantum physics.	SSK/01
6.	Basic concepts of quantum mechanics: Introduction to wave-particle duality and the time-independent Schrödinger's equation.	SSK/01

	Significance of boundary conditions for the concept of quantization. Wave functions and orbitals.	SSK/01
7.	Applicationsof quantum theory: A particle in one, two and three-dimensional boxes and its implications for the understanding of H-atom. Predicting absorption spectra of conjugated systems (porphyrins/β-carotene) using such simple approximations.	SSK/02
	Energy and wave functions of the H-like atoms. Radial distribution functions and shapes of orbitals. Ionic potential and electronegativity.	SSK/02
	Molecular orbital theory and orbital hybridization. The interaction of light with matter.	SSK/01
D.	Organic chemistry	
8.	Revisiting concepts of physical organic chemistry: Conjugation, aromaticity and resonance. Inductive effects. Hydrogen bonding. Hydrophobicity.	KK/01
9.	Application of organic chemistry to biology: SN1, SN2, E1, E2, electrophilic addition reactions; Free radical reactions	KK/01
	Understanding reaction mechanisms of some biological reactions.	KK/03
Е.	Coordination chemistry	
10.	Concepts of coordination chemistry: Coordination bonds and metal-ligand interactions; Hard-soft acid-base (HSAB) theory	SSK/01
11.	Application of coordination chemistry to understand biological systems Coordination geometries; Jahn Teller Distortion; porphyrins as ligands for metals in biology	SSK/01
	Role of the central metal ion in metalloproteins and metalloenzymes	SSK/02

References:

- 1. Atkins' Physical Chemistry
- 2. A guide book to mechanism inorganic chemistry by Peter Sykes
- 3. Advanced Inorganic Chemistry by Cotton and Wilkinson
- 4. Other standard reading material as per requirement will be suggested during classroom discussions.