LS 509 Microbial Physiology (2 credits) A K Johri*, Sneh Lata Panwar, Vikas Yadav

S No	Topic	faculty	Hours
1.	Microbial growth and nutrition: Nutrient uptake into cells,	AKJ	4
	concepts of media design, cultivation and isolation of		
	microorganisms by enrichment. Effect of nutrients and		
	environmental factors on growth rate, manipulation 0f		
	microbial growth for human welfare purposes.		
2.	Microbial metabolism: Biosynthesis and degradation of	VY	3
	biomolecules involving metabolic pathways to maintain		
	microbial structural integrity and its functioning.		
	Understanding of metabolomics, metabolic engineering in		
	context human welfare.		
3.	Soil microbiology and biogeochemical cycles: carbon,	VY	3
	nitrogen, sulphur and phosphorus cycle, nitrogen fixation and		
	its role in crop improvement. Microbial mat communities and		
	biofilms, biomass and biomarkers.		
4.	Microbial physiology in context of environment: Genetic	AKJ	2
	and metabolioc engineering of microorganisms for improved		
	biodegradation and detoxification of toxic and recalcitrant		
	compounds.		
5.	Fermentation technology: Exploitation of microbial	AKJ	4
	metabolism in food technology, distilleries, enzymes,		
	antibiotics and antimicrobial secondary metabolites and		
	alternative energy sources etc.		
6.	Microbe-microbe interaction; Positive and negative	SLP	3
	interactions, competition, synergism, commensalism,		
	understaning of microbial immunity in context of		
	CRISPER/Cas system, microbial toxins.		
7.	Beneficial symbiotic association: Establishment of	SLP	4
	symbiosis, protection, types of symbiosis, microbe-plant		
	symbiosis, microbe-animal symbiosis.		
8.	Human microbe interaction: Human microbiome,	AKJ	3
	pathogenesis mechanisms, innate-host defences, adherence and		
	penetration, colonization, virulence factors.		
9.	Viruses: origin of viruses, viral restriction and modifications,	AKJ	3
	viral diseases of humans, viral infections and mechanism of		
	action.		
10.	Vaccines: Use of bioinformatics, genomics and proteomics for	AKJ	3
	the vaccine development against important human pathogens:		
	fungal, bacteria and viruses		

Books

- Microbial Life: perry, Staley and Lory
 Microbioly An Introduction: Tortora, Funke and Case