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Searching for good strategies in adaptive minority games
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In this paper we introduce and study various adaptive minority game models in which agents try to improve
their performances by modifying their strategies through genetic algorithm based crossover mechanism. One
aim of this study is to find out what happens at the system as well as at the individual agent level. Adaptation
is found to improve the performance of individual agents quite remarkably, to tighten the competition among
the agents, and to drive the whole system towards maximum efficiency. Results from four adaptative minority
games and the basic minority game are compared, and the parameter dependencies of the best performing game
are discussed.
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I. INTRODUCTION

Various systems of natural and societal origin show
complex behavior, which can be attributed to a competit
among interacting agents for scarce resources and thei
aptation to continuously changing environment@1–5#. Such
agents could be diverse in form, function, and capability,
example, cells in an immune system or firms in a financ
market. The nature of interactions between agents is de
dent on their capabilities, and the behavior of an agent ca
considered as a collection of rules governingresponsesto
stimuli. In order to model these systems, a major concer
the selection and representation of the stimuli and respon
through which the behavior and strategies of the agents
defined. In a model, the rules of action serve as a direct
to describe the strategies of agents, and their behavio
studied by monitoring the effect of rules acting sequentia
The other key process to be included in the model isadap-
tation, which in biology serves as a mechanism for an org
ism to try to make itself fit to changing environment. Wh
makes these systems fascinatingly complex is the fact
the environment of a particular agent includes other adap
agents, all competing with each others. Thus, a consider
amount of an agent’s effort goes into adaptation and reac
to the other agents. This is the main source of interes
temporal patterns and emergent behavior these systems
duce.

In this paper, we will study a simple game model,
which agents adapt dynamically to compete and perform
ter. In such a model the strategies, which an agent use
decide the course of action, must be very good or best for
agents to survive—similar to the ‘‘survival of the fittes
principle in biology. So just as an organism adapts itself to
natural environment, we propose that the agents of a g
adapt themselves by modifying their strategies from time
time, depending on their current performances. For this p
pose we borrow the concept of genetic crossover from b
ogy and use it to modify the strategies of agents in the cou
of the game, in the same way as in genetic algorithms@6–8#.
More specifically we apply this adaptation scheme to

*Present address: Department of Physics, Brookhaven Nati
Laboratory, Upton, NY 11973, USA.
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minority game, introduced in Refs.@9–13#. Although the be-
havior of the minority game is believed to expose a num
of important characteristics of complex evolving system
one of its weaknesses is that agents have limited possibil
to improve their own performance whereas in real comp
tive environment attempts to improve ones skills contin
ously are imperative. Our adaptation scheme@14,15# pro-
poses a natural and simple way to take this essential fea
into account, and its application turns out to give resu
quite different from those of the basic minority game and
variants@9,16–18#.

This paper is organized such that next we briefly int
duce our minority game model together with various gene
algorithm based adaptation mechanisms for strategy chan
This is followed by Sec. III, where we first compare compr
hensive computer simulation results of these adaptive ga
and then analyze the parameter dependencies of the bes
forming game. Finally we draw conclusions.

II. MODEL

Let us first describe the basic minority game~BG! model
of Challet and co-workers@9,10#. There one assumes an od
number of agentsN which can perform one of two possibl
actions denoted here by 0 or 1. An agent wins a round o
game if it chooses the action belonging to the minor
group. All the agents are assumed to have access to a fi
amount of ‘‘global’’ information, in the form of a common
bit-string ‘‘memory’’ of M most recent outcomes of th
game, such that there are 2M possible ‘‘history’’ bit strings.
An agent’s ‘‘strategy’’ consists of two possible respons
i.e., an action 0 or an action 1, to each possible history
string. Thus, there are 22M

possible strategies constituting th
whole ‘‘strategy space’’V, from which each agent picksS
strategies at random to form its own poolV i , where i
51, . . . ,N denotes an agent number. Each time the gam
played, timet is incremented by unity and one ‘‘virtual’
point is assigned to the strategies that have predicted
correct outcome and the best strategy is the one which
the highest virtual point score. An agent’s performance
measured by the number of times the agent wins, and
strategy, which the agent used to win, gets a ‘‘real’’ poi
The number of agents who choose one particular ac
changes with time, and is denoted byxt .

In order to describe the collective behavior of the agen
al
©2004 The American Physical Society25-1
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we define the concept of scaled utility in terms ofxt , in the
following way:

U~xt!5$@12u~xt2xM !#xt1u~xt2xM !~N2xt!%/xM ,

~1!

wherexM5(N21)/2 is the maximum number of agents wh
can win, and

u~xt2xM !5H 0 when xt<xM

1 when xt.xM

is the Heaviside unit step function. Whenxt5xM or xt
5xM11, the scaled utility of the system is maximal,Umax
51, as the highest number of agents win. The system
more efficient when deviations from the maximum utili
Umax are small, or in other words, the fluctuations inxt
around the mean (N/2) are small.

At the level of individual agents, their performances in t
basic minority game evolve such that the agents who be
to perform badly do not improve with time, and those w
do well continue doing so@9,14#. This indicates that by
chance well performing agents were blessed with good s
egies while badly performing agents got bad strategies. H
ever, there are competitive environments in which individ
agents need to adapt themselves to do better or to sur
But being good at one moment does not guarantee that
would stay good later. In fact, there are many examples
business, sports, etc. which show that those who have
cided to rest on their laurels have been superseded by t
who have decided to adapt and fight back, persistently. T
feature of dynamic competition needs to be included in
model, and it can be simply realized by allowing agents
modify strategies in their individual pools. How well a
agent does then, in reality, depends on the agent’s capa
ties and skills, and how an agent refines its strategies.

For the adaptation or strategy modification we have c
sen genetic algorithms@8#, which have turned out to be use
ful in various optimization problems. Within the framewo
of the minority game the adaptation is realized by letti
agents to check their performances after a time intervat,
and if an agent finds that it is among the worst perform
fraction n ~where 0,n,1), it modifies its strategies by ap
plying genetic operands to its strategy pool@14,15#. Here the
quantityt describes a time scale that characterizes the a
tation rate of agents in the system. Hence it can vary o
wide range for systems of natural origin to systems of so
etal nature.

In the genetic adaptation schemes of this study, an a
chooses two ‘‘parents’’ from its current pool of strategi
V i(t),V, and draws a~uniformly distributed! random num-
ber to determine the crossover point. Then the parts of
strategies, above and below this point, are interchange
produce two new strategies called the ‘‘offsprings.’’ In add
tion there are various choices as for which strategies
selected as the parents and also which strategies are rep
by the reproduced offsprings. The mechanism which wo
the best depends on the circumstances and can vary
system to system. In some cases it is possible that saving
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parent strategies would threaten the success of the new
strategies or create too stiff a competition among the str
gies leading to possible disorder, and in other cases the
posite might happen. In this study, we have considered f
different adaptation schemes by first selecting from the st
egy pool of an agent, the parent strategies to perform a
netic one point crossover for reproducing offsprings, a
then selecting two old strategies from the same pool to
substituted by the offspring strategies.

~A! Two parent strategies are selected atrandom, and af-
ter one-point genetic crossover the parent strategies are
stituted with the two new strategies~offsprings!.

~B! Two parent strategies are selected atrandomand after
one-point genetic crossover the two worst performing st
egies are substituted with the two new strategies~offsprings!
while the parent strategies are saved.

~C! Two bestperforming strategies are selected as pare
and after one-point genetic crossover the parents are su
tuted with the two new strategies~offsprings!.

~D! Two bestperforming strategies are selected as pare
and after one-point genetic crossover two worst perform
strategies are substituted with the two new strategies~off-
springs! while the parent strategies are saved.

We would like to propose that these adaptation schem
could be considered in a loose sense to bear some re
blance to reality. From the point of view of choosing paren
at random, schemes~A! and~B! correspond to ‘‘democratic’’
or equal opportunity reproduction, while schemes~C! and
~D! are ‘‘elitist’’ due to selecting the best parents for repr
duction. As for substitutions in the agents’ strategy pools
schemes~A! and ~C! parents give space for their offspring
to live and develop without the need to fight with them f
limited resources, a sacrifice for improving the survival
the species. Examples of parents dying after reproduction
numerous in nature. In decision making the interpretation
killing the parent strategies is that old strategies—unable
lead into success—are removed to give way to hopefu
better strategies. Schemes~B! and ~D!, with parents being
saved and agents getting rid of their worst strategies, b
some resemblance to ‘‘natural selection’’ of the fittest surv
ing species. On the other hand, in decision making situati
these two schemes correspond to agents eradicating thei
ing strategies. Thus it is expected that schemes~B! and ~D!
lead to a tightening competition between agents. Furth
more, it could be expected that scheme~D! is the most effi-
cient one, because it removes the worst strategies and
places them with crossovers of the best ones, while sav
the so far two best strategies in the game. In order to st
the effects of the stiff competition between agents with co
tinuously improving strategies in more detail, large sc
simulations are needed. In these simulations it turns out
when agents use genetic operands, the scaled utility of
system increases and tends to maximize with different ra
depending on the mechanism and the parameters of
game.

It should be noted that our genetic algorithm bas
mechanisms of evolution are considerably different from
mechanisms applied before within the framework of the m
nority games@9,16–18#. Here, the strategies are changed
5-2
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SEARCHING FOR GOOD STRATEGIES IN ADAPTIVE . . . PHYSICAL REVIEW E 69, 036125 ~2004!
the agents themselves and they belong to the same stra
spaceV, that is not changing in size and dimension.

III. RESULTS

A. Comparison between adaptation mechanisms

In order to compare the above introduced four gene
adaptation mechanisms, we first study the quantityxt , which
describes the number of agents taking a particular action
given time. For this we chose the parameters of the game
follows: N5801 agents withM56 memories,S516 strate-
gies, and an adaptation timet540 for the worst performing
fractionn50.4 of the agents, which we expect to be relev
in terms of the system size and obtainable statistics. Also
found out that in the game with adaptation scheme~D! the
fluctuations increase monotonically with the control para
eterz52M/N, i.e., without showing a phase change, unli
in the basic minority game. Thus for an even comparison
parameters were adjusted for the same phase in all
games. The simulation results are depicted in Fig. 1.

First, in Fig. 1~a! we present the results of adaptatio
scheme~A!, in which the randomly chosen parent strateg
are replaced with the reproduced offspring strategies. In
case it turned out that fluctuations inxt around its mean
('400) decay very rapidly from the initial level, which co
responds to the amount of fluctuations of the basic mino
game, to a more or less constant level of less than half
initial value. This renders the scheme~A! game more effi-
cient than the basic minority game. Second, in Fig. 1~b! we
present the results of adaptation scheme~B!, in which the
offsprings strategies of randomly chosen parent strategie
place the two worst strategies in the agent’s pool. In this c
we observe that fluctuations inxt around the mean decay
first rapidly below the value produced by scheme~A! and
then slower to even smaller values. Thus the efficiency of
system is further improved. Third, in Fig. 1~c! we present the
results of adaptation scheme~C!, in which the best two strat
egies as parents are replaced after reproduction with t

FIG. 1. Plots ofxt ~the number of agents making a particul
action! as a function of time, for the four adaptation mechanis
~A!–~D! described in Sec. II.
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offspring strategies. In this case fluctuations inxt around the
mean once again decay rapidly then stabilizing to a le
which is smaller than for adaptation scheme~A! but larger
than for adaptation scheme~B!. Fourth, in Fig. 1~d! we
present the results of adaptation scheme~D!, in which the
offspring strategies of the best two strategies as parents
place the two worst strategies in the agent’s pool. In this c
we see that fluctuations inxt die off very rapidly, thus mak-
ing the system most efficient.

Next we investigate the scaled utilityU(xt), defined in
Eq. ~1!, which apart from the efficiencies of the games
expected to give insight to their dynamical behavior. Inste
of the standard practice of studying the variation ofs2/N
versus 2M/N, whereusu stands for the difference in the num
ber of agents between the majority and minority groups,
have studiedU, because fluctuations inxt decay strongly for
adaptation mechanisms~B! and~D!, in the latter case some
times even disappearing completely. In Fig. 2 we show
results of~a! the scaled utilityU and~b! the utility deviation
12U from the maximumUmax51 as a function of the
scaled time for the four adaptation mechanisms, using
same set of parameters as before~i.e., N5801, M56, S
516, t540, andn50.4). We find that the scaled utility
rapidly saturates for the basic minority game, to efficien
level considerably less than the maximum. On the ot
hand, it is clearly seen that our four adaptation mechanis
greatly enhance the utilities close to the maximum. Howev
as evident in Fig. 2~b!, the utility enhancement for mecha
nisms~A! and~C! seem to slow down or possibly even sat
rate to values slightly belowUmax51 while for mechanisms
~B! and ~D! Umax is approached more rapidly or possib
asymptotically. Of the latter two mechanisms the efficien
of scheme~D! game improves the fastest and is best over
The same tendencies were also visible in Fig. 1. Thus we
conclude that the ‘‘elitist’’ adaptation scheme, in which on
the best performing strategies can be used to reproduce
offspring strategies to replace worst performing strategies

s

FIG. 2. ~a! Scaled utility U and maximum utility Umax51
~dashed horizontal line! and ~b! utility deviation (12U) for four
adaptation mechanisms as functions of scaled time~one unit of
scaled time corresponds to a time average over a bin of 50 sim
tion time steps!. Each curve is an ensemble average over 100 ru
In both panels, crosses represent the basic minority game, solid
represents adaptation mechanism~A!, the dash dotted line repre
sents mechanism~B!, the dotted line represents mechanism~C!, and
the dashed line represents mechanism~D!.
5-3
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the best adaptive game. Later we will return to scheme~D!
game to study in detail its parametric dependencies.

In order to examine the evolution of strategies in t
agents’ pools we use the Hamming distance, denoted bydH .
It measures how similar the strategies are and is defined
tween two strategies as the ratio of the uncommon bits to
total length of the strategy. The strategies are ‘‘correlated,
all the bits are pairwise the same, i.e.,dH50, ‘‘anticorre-
lated’’ if all bits are opposite, i.e.,dH51, and ‘‘uncorre-
lated’’ when exactly one half of the bits differ, i.e.,dH
50.5.

Here we will consider the average Hamming distan
which is calculated by first taking the average of the Ha
ming distances over all possible strategy pairs in the age
pool, and then taking the average over all the agents. Whi
is obvious that individual Hamming distances between st
egy pairs can change as a result of genetic crossovers
situation is more complex for the average Hamming d
tance. As a matter of fact in the adaptation schemes in wh
the parent strategies after crossover are replaced by their
springs@i.e., schemes~A! and~C!#, all the bits in the agent’s
strategy pool and for that matter in the whole strategy sp
remain the same, and thus the average Hamming dist
does not change. Therefore, this measure is useful only
the games where the bits in a strategy pool can change
time, i.e., adaptation schemes~B! and ~D!, for which the
results are depicted in Fig. 3. Here it is seen that as the g
evolves, the average Hamming distance decreases in
cases towards small values, but for scheme~B! game this
happens considerably slower than for the scheme~D! game.

FIG. 3. The average Hamming distance vs the number of
netic operations~one genetic operation takes place after everyt
time steps! for different adaptation mechanisms and paramet
The simulation was done withN5801, t580, n50.4 and for dif-
ferent combinations of memoriesM, strategiesS, and adaptation
schemes@~B! or ~D!#, as indicated in the legend. Each point is
ensemble average over 20 runs. The average Hamming dist
dH50.5 is shown as a dashed horizontal line.
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In the latter casedH reaches a very small value, indicatin
that each agent tends to end up using a particular strateg
its pool for the best performance. In the case of scheme~B!
the same seems to happen but it takes at least an ord
magnitude longer time. On the other hand the plots ofxt ~i.e.,
the number of agents choosing a particular action, depic
in Fig. 1! shows that these strategies are such that the t
utility, and thus the efficiency of the system tends to ma
mize.

In Fig. 3 the results are shown for varying the memo
sizeM and the number of strategiesS in each agent’s pool.
We have observed that for adaptation mechanism~B! in-
creasingM while keepingS510 fixed makes the decay i
the average Hamming distance faster, yieldingM58, the
fastest decaying case. On the other hand, increasingS and
keepingM56 fixed does not seem to yield any systema
behavior, while theS510 case seems to give rise to th
fastest decay in the average Hamming distance. For ada
tion mechanism~D! the situation is even less systemat
since increasingM and keepingS510 fixed yields the fastes
decayingM56 case, and increasingS and keepingM56
yields the fastest decayingS550 case.

As a final comparison between different adaptati
mechanisms we have studied a mixed game, in which ag
can change their strategies with different adaptation schem
In this game all the agents start by playing the basic mino
game up to a given timet53120 simulation time steps
Thereafter, three players continue playing with adaptat
scheme~A! and another three with adaptation scheme~D!,
while the remaining players continue playing the basic m
nority game using their initially introduced strategy poo
without adaptation. From the simulation results, depicted
Fig. 4, we find that the adaptive agents, some of which w
the worst performing agents at the beginning, beco
quickly successful and outperform all the agents playing
basic minority game. As a matter of fact the slopes of
performance curves, i.e., the success rates of adaptive ag
is by far better than the best agent playing the basic mino
game. In addition, we observe that all the agents using ad
tation scheme~D! perform better than those using schem
~A!, and that the competition between these three is tou
This serves as further evidence that adaptation scheme~D! is
the most efficient one of the games discussed here, and
interesting for a more detailed analysis.

B. Parametric studies

In this section we study the dependence of our adap
game~D! on the model parameters, i.e., the memory sizeM,
the number of strategiesS in each agent’s pool, the adapta
tion time t, and the fraction of worst performing agentsn.
This is done in terms of the scaled utilityU, defined in Eq.
~1! and describing the efficiency of the game. Here we w
use the quantity 12U to illustrate the deviation from the
maximum utility Umax51. Below we present results of ex
tensive simulations for utility deviation vs scaled time~one
unit of scaled time corresponds to a time average over a
of 50 simulation time steps! when the parameters were va
ied in pairs:~i! t andM ~Fig. 5!, ~ii ! S andM ~Fig. 6!, and
~iii ! n andM ~Fig. 7!.
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In Fig. 5 we show the effect of changing the adaptat
time t510, 20, 40, 80, and 160~each panel! and memory
M55, 6, 7, and 8~separate panels!. For memoryM55 and
6 ~two upper panels! and for all the studied adaptation time
the utility deviation curves after initial transient periods a
found to decrease; thus the games become more effic
This transient appears to be directly proportional to the
aptation time, and the curves show more or less a lin
decay region in scaled time, such that each region seem

FIG. 4. Performances of selected agents as a function of time
a mixed game with agents having different adaptation schemes.
performances are scaled such that the mean performance of a
agents is zero. Att53120, six agents begin to modify their strat
gies such that three of them~the three uppermost! used adaptation
scheme~D! and the other three~the next three from top! used ad-
aptation scheme~A!. All the rest of the agents played the bas
minority game without adapting; the performances of only the b
the worst, and two randomly chosen agents are shown~the four
lowermost curves!. Simulations were done withN5801, M58,
S516, n50.3, andt580.

FIG. 5. Utility deviation 12U vs scaled time: Effects of the
adaptation timet and memoryM. Simulations were done withN
51001, S510, andn50.3, and ensemble averaging each cu
over 50 runs.
03612
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fit reasonably to a power-law form 12U;(scaled time)2x,
with x'1.9. However, in the late time behavior of curve
with small adaptation timest510 and 20, we see a slowin
down in the utility improvement to apparently constant v
ues of utility, which fort520 turns out to be nearerUmax
51 than fort510. On the other hand, for memoryM57
and 8~two lower panels! the overall behavior is fairly similar
to that for smaller memory (M55 and 6!, though the total
improvement in utility appears to be considerably less wit
the total simulation time used. In fact the change in the e
ciency of the games seems to decrease with increa
memory size. This is due to transient period getting lon
and utility improvement slowing down or saturating earlie
~In the M58 panel the utility saturation is clearly visible a
late times for the adaptation timest510, 20, and 40, while
for t580 a slowing down in the utility improvement firs

or
he
the

t,

FIG. 6. Utility deviation 12U vs scaled time: Effects of the
number of strategiesSand memoryM. Simulations were done with
N51001, t540, n50.3, and ensemble averaging each curve o
50 runs.

FIG. 7. Utility deviation 12U vs scaled time: Effects of the
fraction n of the worst performing agents and memoryM. Simula-
tions were done withN51001, S510, t580, and ensemble aver
aging each curve over 50 runs.
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appears, possibly turning later to saturation, and fort5160
is not yet visible but likely to become so even later in sca
time!. Between early and late time regions 12U curves
show a linear decay with an exponentx comparable to tha
above, though the fitting is unreliable due to shrinkage of
linear decay region.

It is interesting to note that longer adaptation times ev
tually lead to a better utility, i.e., a higher efficiency. This
because for a higher dimensional strategy space~due to
memory increase! it takes a longer time until sufficiently
many histories are gone through to verify the success
particular strategy. On the other hand, if we do not all
enough time for the adaptation to happen, strategies
changed too often and even the good ones are likely to
disregarded. We will discuss this issue later by exploring
interplay between the adaptation time and simulation
game time.

In Fig. 6 we show the effect of changing the number
strategiesS55, 10, 20, and 40~each panel! and the memory
sizeM55, 6, 7, and 8~separate panels!. We found that for
eachM value the dependence of the utility deviation, 12U
on S, is, in terms of a transient, of linear decay with a fitt
power law exponent, and has a late-time saturation beha
quite similar with the dependence ont, though to a lesse
extent. However, unlike previously, increasing the numbe
strategies seems to shift the utility deviation curve sligh
up, such that the system reaches similar efficiency value
those in Fig. 5 later. On the other hand, the dependenc
the utility improvement on the memory size is as dramatic
in the previous case.

In Fig. 7 we show the effect of changing the fraction
the worst performing agentsn50.2, 0.3, 0.4, 0.5, and 0.6
~each panel! and the memory sizesM55, 6, 7, and 8~sepa-
rate panels!. Once again we found that the dependence of
utility deviation, 12U on n is in terms of a transient, and o
linear decay with a fitted power law exponent, quite simi
to the dependence ont or S. However, increasing the frac
tion of the worst performing agents seems to push the l
time utility slowing down or saturation to even later scal
times. Once again the effect of memory size is as dramati
before.

In Figs. 5–7 we see oscillations specifically in panels w
larger memory sizes. They seem to be proportional to 2M,
i.e., the number of histories in the game. The reason for th
oscillations is most probably the approximately periodic re
etition of histories: part of the agents stick to their favor
strategies, which are repeated as a particular history
time around.

Earlier we found that the late-time behavior of the sca
utility changes for different adaptation times. This is beca
larger memory values increase the dimensionality of
strategy space and thus require longer adaptation time
order to study this behavior in more detail we have do
simulations for several memory sizesM55, 6, 7, 8, and 9
paired either with the total simulation timeT510 000 or
20 000. In Fig. 8 we present the results for the utility dev
tion 12U vs the adaptation timet, which for a givenM
shows an overall utility improvement due to doubling t
total simulation time. For shorterT510 000 and allM’s
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there appear minima in 12U or efficiency maxima, which
for T520 000 and the sameM show shifts to higher adapta
tion times. Thus we expect that increasing the simulat
time without limits would make the 12U vs t curve behave
monotonically, approaching an asymptotically maximum
ficiency. This can be interpreted that the longer an agent
observe its strategies the more certain it can be of their
formances. On the other hand, if the adaptation time is
duced too much, crossovers would take place more at
dom. For finite simulation times these curves could g
guidance for a preferable adaptation time. Intuitively, o
could guess that a good adaptation time would be clos
2M, because if the occurrence of histories were uniform
distributed this would constitute the expectation time for
agent to go through all the histories once and thus see
successful a response determined by a strategy has be
each case.

IV. DISCUSSIONS

In this paper we have studied various genetic algorit
based adaptation mechanisms within the framework of
minority game, and found significant changes in the coll
tive and individual behaviors of the agents. It turned out t
the adaptation mechanism in which the best two strate
are chosen as parents and their offspring strategies rep
the two worst strategies in the agent’s pool leads the sys
fastest and nearest to maximum utility or efficiency. The p
eminence of the best adaptation mechanism can be se
the system level as well as at the agent level: fluctuation
xt smooth down quickly and the agents outperform tho
using other mechanisms participating in the same game.
overall success of genetic algorithm based adaptation me

FIG. 8. Utility deviation 12U as a function of the adaptatio
time t, for different values of memoryM and simulation times
~indicated byT). Each point is the time average over the last 5
time steps of the simulation and ensemble averages over 70 ru
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nisms in minority games suggests they also be used in o
game theoretic optimization problems. It should be no
that the minority game deviates from the traditional optim
zation problems because it does not include a particular
ject function or functions to be maximized. This makes o
findings very interesting, exposing a certain characteristic
the minority game, namely, if agents have the possibility
adapt through the responses to the stimuli, they drive
wards a state where their own performance improves and
collective of all agents gains a maximum amount of util
every time the game is played. This property stems fr
convergence of strategies in the strategy space towards,
way, the optimal ones. They are optimal only in the se
that they tend to bring the maximum utility for the collectiv
e,

s

n
,
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meaning that at each time step the number of agents win
is as large as possible, i.e., the number of satisfied individ
agents is at a maximum. In conclusion it seems possible
simple adaptation schemes and especially those mimic
nature could further extend the class of phenomena wh
minority game type models would be able to describe.
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