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Searching for good strategies in adaptive minority games
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In this paper we introduce and study various adaptive minority game models in which agents try to improve
their performances by modifying their strategies through genetic algorithm based crossover mechanism. One
aim of this study is to find out what happens at the system as well as at the individual agent level. Adaptation
is found to improve the performance of individual agents quite remarkably, to tighten the competition among
the agents, and to drive the whole system towards maximum efficiency. Results from four adaptative minority
games and the basic minority game are compared, and the parameter dependencies of the best performing game
are discussed.
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[. INTRODUCTION minority game, introduced in Reff9—13]. Although the be-
havior of the minority game is believed to expose a number
Various systems of natural and societal origin show &0f important characteristics of complex evolving systems,
complex behavior, which can be attributed to a competitiorPn€ of its weaknesses is that agents have limited possibilities
among interacting agents for scarce resources and their aff2 improve their own performance whereas in real competi-

aptation to continuously changing environmébt5]. Such g\ljil;r;go{:%%?;ﬂéemgﬁ ;%;rggt?gﬁ SOCnheeS['ﬁsékljl.lé g‘r)g_t'”u'
agents could bg d|ver_se in form, function, land g:apablllty, fpr oses a hatural and éimple way to take this eséential feature
exarI?ptIe_,”g:ells Itn an :crr'erunet.systel;ntor firms in ? f.'na(‘an'a%to account, and its application turns out to give results
market. The nature ot interactions between agents 1S depelyjite gifferent from those of the basic minority game and its
dent on their capabilities, and the behavior of an agent can

) k . riants[9,16—-1§.

considered as a collection of rules governiggponseso This paper is organized such that next we briefly intro-
stimuli. In order to model these systems, a major concem igy,ce our minority game model together with various genetic
the selection and representation of the stimuli and réSpONSesyorithm based adaptation mechanisms for strategy changes.
through which the behavior and strategies of the agents argis i followed by Sec. Ill, where we first compare compre-
defined. In a model, the rules of action serve as a direct wayengjve computer simulation results of these adaptive games

to describe the strategies of agents, and their behavior ig,q then analyze the parameter dependencies of the best per-
studied by monitoring the effect of rules acting sequentlally.forming game. Finally we draw conclusions.

The other key process to be included in the modeldap-

tation, which in biology serves as a mechanism for an organ- Il. MODEL

ism to try to make itself fit to changing environment. What . ) o

makes these systems fascinatingly complex is the fact that Let us first describe the basic minority gaufiG) model

the environment of a particular agent includes other adaptivef Challet and co-worker9,10]. There one assumes an odd

agents, all competing with each others. Thus, a considerabfeimber of agent&l which can perform one of two possible

amount of an agent's effort goes into adaptation and reactiofctions denoted here by 0 or 1. An agent wins a round of a

to the other agents. This is the main source of interesting@me if it chooses the action belonging to the minority

temporal patterns and emergent behavior these systems pi@roup. All the agents are assumed to have access to a finite

duce. amount of “global” information, in the form of a common

In this paper, we will Study a Simp|e game mode|' in bit-String “memory" of M most recent outcomes of the

which agents adapt dynamically to compete and perform begame, such that there aré' ossible “history” bit strings.

ter. In such a model the strategies, which an agent uses @y agent's “strategy” consists of two possible responses,

decide the course of action, must be very good or best for the€., an action 0 or an action 1, to each possible history bit

agents to survive—similar to the “survival of the fittest” string. Thus, there are?? possible strategies constituting the

principle in biology. So just as an organism adapts itself to itsvhole “strategy spacel), from which each agent pickS

natural environment, we propose that the agents of a gamstrategies at random to form its own pofd;, wherei

adapt themselves by modifying their strategies from time to=1, ... N denotes an agent number. Each time the game is

time, depending on their current performances. For this purplayed, timet is incremented by unity and one “virtual”

pose we borrow the concept of genetic crossover from biolpoint is assigned to the strategies that have predicted the

ogy and use it to modify the strategies of agents in the courseorrect outcome and the best strategy is the one which has

of the game, in the same way as in genetic algorit@as8].  the highest virtual point score. An agent’s performance is

More specifically we apply this adaptation scheme to themeasured by the number of times the agent wins, and the
strategy, which the agent used to win, gets a “real” point.
The number of agents who choose one particular action

*Present address: Department of Physics, Brookhaven Nationahanges with time, and is denoted Xy
Laboratory, Upton, NY 11973, USA. In order to describe the collective behavior of the agents,
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we define the concept of scaled utility in termsxgf in the  parent strategies would threaten the success of the newborn

following way: strategies or create too stiff a competition among the strate-
gies leading to possible disorder, and in other cases the op-
U (%) ={[1— 0(x;—Xw) IX¢+ 0% —Xpm) (N=X) H Xy, posite might happen. In this study, we have considered four

(1) different adaptation schemes by first selecting from the strat-
egy pool of an agent, the parent strategies to perform a ge-
netic one point crossover for reproducing offsprings, and

then selecting two old strategies from the same pool to be
substituted by the offspring strategies.

wherexy, = (N—1)/2 is the maximum number of agents who
can win, and

0 when x;=<xy

O(X,— Xy) = (A) Two parent strategies are selectedaatdom and af-
1 when X;>Xy ter one-point genetic crossover the parent strategies are sub-
stituted with the two new strategiésffsprings.
is the Heaviside unit step function. Wheq=xy or x (B) Two parent strategies are selectedaatdomand after

=xm+1, the scaled utility of the system is maximél,,.x  one-point genetic crossover the two worst performing strat-
=1, as the highest number of agents win. The system iggies are substituted with the two new strategasprings
more efficient when deviations from the maximum utility while the parent strategies are saved.
Umax are small, or in other words, the fluctuations xp (C) Two bestperforming strategies are selected as parents,
around the meanN/2) are small. and after one-point genetic crossover the parents are substi-
At the level of individual agents, their performances in thetuted with the two new strategigsffsprings.
basic minority game evolve such that the agents who begin (D) Two bestperforming strategies are selected as parents
to perform badly do not improve with time, and those whoand after one-point genetic crossover two worst performing
do well continue doing sd9,14]. This indicates that by strategies are substituted with the two new strategiéfs
chance well performing agents were blessed with good strakpringg while the parent strategies are saved.
egies while badly performing agents got bad strategies. How- We would like to propose that these adaptation schemes
ever, there are competitive environments in which individualcould be considered in a loose sense to bear some resem-
agents need to adapt themselves to do better or to survivlance to reality. From the point of view of choosing parents
But being good at one moment does not guarantee that org random, schemé#) and(B) correspond to “democratic”
would stay good later. In fact, there are many examples ior equal opportunity reproduction, while schen(€ and
business, sports, etc. which show that those who have deb) are “elitist” due to selecting the best parents for repro-
cided to rest on their laurels have been superseded by thos@ction. As for substitutions in the agents’ strategy pools, in
who have decided to adapt and fight back, persistently. ThischemegA) and (C) parents give space for their offsprings
feature of dynamic competition needs to be included in thao live and develop without the need to fight with them for
model, and it can be simply realized by allowing agents taimited resources, a sacrifice for improving the survival of
modify strategies in their individual pools. How well an the species. Examples of parents dying after reproduction are
agent does then, in reality, depends on the agent’s capabilrumerous in nature. In decision making the interpretation of
ties and skills, and how an agent refines its strategies.  killing the parent strategies is that old strategies—unable to
For the adaptation or strategy modification we have chotead into success—are removed to give way to hopefully
sen genetic algorithm$], which have turned out to be use- better strategies. Schemé&B) and (D), with parents being
ful in various optimization problems. Within the framework saved and agents getting rid of their worst strategies, bear
of the minority game the adaptation is realized by lettingsome resemblance to “natural selection” of the fittest surviv-
agents to check their performances after a time interval ing species. On the other hand, in decision making situations
and if an agent finds that it is among the worst performingthese two schemes correspond to agents eradicating their los-
fractionn (where 0<n<1), it modifies its strategies by ap- ing strategies. Thus it is expected that sche@sand (D)
plying genetic operands to its strategy ppb#,15. Here the  lead to a tightening competition between agents. Further-
quantity 7 describes a time scale that characterizes the adapnore, it could be expected that schef® is the most effi-
tation rate of agents in the system. Hence it can vary on aient one, because it removes the worst strategies and re-
wide range for systems of natural origin to systems of sociplaces them with crossovers of the best ones, while saving
etal nature. the so far two best strategies in the game. In order to study
In the genetic adaptation schemes of this study, an agemite effects of the stiff competition between agents with con-
chooses two “parents” from its current pool of strategiestinuously improving strategies in more detail, large scale
Q;(t)CQ, and draws @uniformly distributed random num-  simulations are needed. In these simulations it turns out that
ber to determine the crossover point. Then the parts of thevhen agents use genetic operands, the scaled utility of the
strategies, above and below this point, are interchanged teystem increases and tends to maximize with different rates
produce two new strategies called the “offsprings.” In addi- depending on the mechanism and the parameters of the
tion there are various choices as for which strategies argame.
selected as the parents and also which strategies are replacedt should be noted that our genetic algorithm based
by the reproduced offsprings. The mechanism which worksnechanisms of evolution are considerably different from the
the best depends on the circumstances and can vary fromechanisms applied before within the framework of the mi-
system to system. In some cases it is possible that saving thrity gamed9,16—18. Here, the strategies are changed by

036125-2



SEARCHING FOR GOOD STRATEGIES IN ADAPTIE . . . PHYSICAL REVIEW E 69, 036125 (2004

800 800 100
700 a 700 b
800 800 O L T ——
500 500 - Ak 4,
5= 400 L 400 %
300 = 300
200 200 o T
100 100 vl 10
00 2000 4000 6000 8000 10000 00 2000 4000 6000 8000 10000
Time Time 10 ‘
800 800 "\\
700 c 700 d a b
~
600 600 0 100 200 | 300 400 10 10“ 10‘ 102
500 500 Scaled time Scaled time
400 =~ 400
300 300 FIG. 2. (8 Scaled utility U and maximum utilityU,,,,=1
fgg fzz (dashed horizontal lineand (b) utility deviation (1—U) for four
adaptation mechanisms as functions of scaled tipree unit of
00 2000 4000 6000 8000 10000 00 2000 4000 6000 8000 10000 H . H H
scaled time corresponds to a time average over a bin of 50 simula-
T
Time ime

tion time steps Each curve is an ensemble average over 100 runs.
FIG. 1. Plots ofx, (the number of agents making a particular In both panels, crosses represent the basic minority game, solid line

action as a function of time, for the four adaptation mechanisms'€Presents adaptation mechaniéf, the dash dotted line repre-
(A)—(D) described in Sec. II. sents mechanisiiB), the dotted line represents mechanigmy and

the dashed line represents mechanifm
the agents themselves and they belong to the same strategy

space(), that is not changing in size and dimension. offspring strategies. In this case fluctuationsjraround the
mean once again decay rapidly then stabilizing to a level
IIl. RESULTS which is smaller than for adaptation schei#e but larger

than for adaptation schem@). Fourth, in Fig. 1d) we
present the results of adaptation schef¢ in which the

In order to compare the above introduced four genetioffspring strategies of the best two strategies as parents re-
adaptation mechanisms, we first study the quamtitywhich ~ place the two worst strategies in the agent’s pool. In this case
describes the number of agents taking a particular action atsie see that fluctuations i die off very rapidly, thus mak-
given time. For this we chose the parameters of the games &g the system most efficient.
follows: N=801 agents wititM =6 memoriesS=16 strate- Next we investigate the scaled utility(x;), defined in
gies, and an adaptation time=40 for the worst performing Eq. (1), which apart from the efficiencies of the games is
fractionn=0.4 of the agents, which we expect to be relevantexpected to give insight to their dynamical behavior. Instead
in terms of the system size and obtainable statistics. Also wef the standard practice of studying the variationodfN
found out that in the game with adaptation schef@ethe  versus 2'/N, where|o| stands for the difference in the num-
fluctuations increase monotonically with the control param-ber of agents between the majority and minority groups, we
eterz=2M/N, i.e., without showing a phase change, unlikehave studiedJ, because fluctuations i decay strongly for
in the basic minority game. Thus for an even comparison th@daptation mechanisntiB) and(D), in the latter case some-
parameters were adjusted for the same phase in all thigmes even disappearing completely. In Fig. 2 we show the
games. The simulation results are depicted in Fig. 1. results of(a) the scaled utilityd and(b) the utility deviation

First, in Fig. Xa) we present the results of adaptation1—U from the maximumU.,=1 as a function of the
scheme(A), in which the randomly chosen parent strategiesscaled time for the four adaptation mechanisms, using the
are replaced with the reproduced offspring strategies. In thisame set of parameters as befé¢ire., N=801, M=6, S
case it turned out that fluctuations iy around its mean =16, r=40, andn=0.4). We find that the scaled utility
(=~400) decay very rapidly from the initial level, which cor- rapidly saturates for the basic minority game, to efficiency
responds to the amount of fluctuations of the basic minoritjevel considerably less than the maximum. On the other
game, to a more or less constant level of less than half thband, it is clearly seen that our four adaptation mechanisms
initial value. This renders the schent&@) game more effi- greatly enhance the utilities close to the maximum. However,
cient than the basic minority game. Second, in Figp) lve  as evident in Fig. @), the utility enhancement for mecha-
present the results of adaptation schef@g in which the nisms(A) and(C) seem to slow down or possibly even satu-
offsprings strategies of randomly chosen parent strategies reate to values slightly below ,,,,=1 while for mechanisms
place the two worst strategies in the agent’s pool. In this caséB) and (D) U,,ax is approached more rapidly or possibly
we observe that fluctuations iy around the mean decay, asymptotically. Of the latter two mechanisms the efficiency
first rapidly below the value produced by schee and of schemgD) game improves the fastest and is best overall.
then slower to even smaller values. Thus the efficiency of th@he same tendencies were also visible in Fig. 1. Thus we can
system is further improved. Third, in Fig(d we present the conclude that the “elitist” adaptation scheme, in which only
results of adaptation schen@), in which the best two strat- the best performing strategies can be used to reproduce new
egies as parents are replaced after reproduction with theoffspring strategies to replace worst performing strategies, is

A. Comparison between adaptation mechanisms
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10’ - . . - . In the latter casely reaches a very small value, indicating
d,=0.5 that each agent tends to end up using a particular strategy in
LTV o vor o orvosomorrowarmomeee e ee e its pool for the best performance. In the case of schée
o, Cog, the same seems to happen but it takes at least an order of
QM% magnitude longer time. On the other hand the plots; df.e.,
& asgxx M&%« the number of agents choosing a particular action, depicted
G0k 88;& DM"»»»» 9009900940040 40440q | in Fig. 1) shows that these strategies are such that the total
§ 8%5;:”’ e N, utility, and thus the efficiency of the system tends to maxi-
5 0, mize.
£ Sy e, In Fig. 3 the results are shown for varying the memory
£ %o, o%oo%%;;;% sizeM and the number of strategléﬂn each agent's pool.
T b, QWWWWW We have observed that for adaptation mechani{&n in-
§10-2_ o Ms6, 5=10, (D) 0%%% xxxxxxxxxxxxx _ creasingM while kegpmgSz 10 fixed makgs the decay in
g ° mj g:}g: EB% oo%%o%%o% xxxxxxxxxxxxxx the average Hamming distance faster, yieldWig=8, the
: e 50 EB; OWWMMMWM faste_st decayln_g case. On the other ha_nd, increaSiagd _
4 M=5, =10, (B) keepingM =6 fixed does not seem to yield any systematic
e behavior, while theS=10 case seems to give rise to the
v M=6,5=30, (B) fastest decay in the average Hamming distance. For adapta-
107, . M=6’S=i°’ i e e _ ] tion mechanism(D) the situation is even less systematic,
Number of genetic operations since increasini! and keeping= 10 fixed yields the fastest

. . decayingM =6 case, and increasing and keepingM =6
FIG. 3. The average Hamming distance vs the number of geyields the fastest decayir=50 case.
netic operationgone genetic operation takes place after every As a final comparison between different adaptation

time S.tep$ f.or different ada_lptation mechanisms and parameters o chanisms we have studied a mixed game, in which agents
:er;znsilTgmmtviﬁ,dc?fnrenm:r:i:mm;t:;fg{eg %f'] dag(él;g;a?ilgn can change their strategies with different adaptation schemes.
o ! o In this game all the agents start by playing the basic minority
schemeg(B) or (D)], as indicated in the legend. Each point is an . . . . .
ensemble average over 20 runs. The average Hamming distan me up to a given tlme:31_20 SImulgtlon _tlme steps:
dy=0.5 is shown as a dashed horizontal line. ereafter, three players contm_ue playlng_ with adaptation
scheme(A) and another three with adaptation schefbe,
while the remaining players continue playing the basic mi-
nority game using their initially introduced strategy pools
without adaptation. From the simulation results, depicted in

In order to examine the evolution of strategies in theF. 4 find that the adaofi t which
agents’ pools we use the Hamming distance, denoted}by Ig. 4, we find that the adaptive agents, some of which were
' the worst performing agents at the beginning, become

It measures how similar the strategies are and is defined be- - :
tween two strategies as the ratio of the uncommon bits to thEUICkIy successiul and outperform all the agents playing the

i ) » zoasic minority game. As a matter of fact the slopes of the
:Ejlta}tlhlg nt?I:rS1 gfréhgasiiﬁitsg );.h'(l;hseas;;[]r: teigdles_ege ugﬂi{gﬁgd’ ncperformance curves, i.e., the success rates of adaptive agents,
y LGy — U, -

lated” if all bits are opposite, i.e.dy=1, and “uncorre- is by far better than the best agent playing the basic minority

, . X ) game. In addition, we observe that all the agents using adap-
Iztg% when exactly one half of the bits differ, i.edy tation schemgD) perform better than those using scheme

(A), and that the competition between these three is tough.

Here we will consider the average Hamming distance, ; ; .
L - . Thi rv further evidence th ion Brin
which is calculated by first taking the average of the Ham-, s serves as further evidence that adaptation schBynis

. ) ; o= the most efficient one of the games discussed here, and thus
ming distances over all possible strategy pairs in the ag(.anti?teresting for a more detailed analysis.

pool, and then taking the average over all the agents. While i

is obvious that individual Hamming distances between strat-
egy pairs can change as a result of genetic crossovers, the
situation is more complex for the average Hamming dis- In this section we study the dependence of our adaptive
tance. As a matter of fact in the adaptation schemes in whicgame(D) on the model parameters, i.e., the memory $ize
the parent strategies after crossover are replaced by their offhe number of strategieSin each agent’s pool, the adapta-
springs[i.e., schemegA) and(C)], all the bits in the agent’s tion time 7, and the fraction of worst performing agemts
strategy pool and for that matter in the whole strategy spac&his is done in terms of the scaled utility, defined in Eq.
remain the same, and thus the average Hamming distan¢&) and describing the efficiency of the game. Here we will
does not change. Therefore, this measure is useful only farse the quantity £ U to illustrate the deviation from the
the games where the bits in a strategy pool can change overaximum utility U,,,,=1. Below we present results of ex-
time, i.e., adaptation schem¢B) and (D), for which the tensive simulations for utility deviation vs scaled tir@ne
results are depicted in Fig. 3. Here it is seen that as the gamenit of scaled time corresponds to a time average over a bin
evolves, the average Hamming distance decreases in botli 50 simulation time stepsvhen the parameters were var-
cases towards small values, but for schefe game this ied in pairs:(i) 7 andM (Fig. 5), (i) SandM (Fig. 6), and
happens considerably slower than for the schéegame.  (iii) n andM (Fig. 7).

the best adaptive game. Later we will return to scheébe
game to study in detail its parametric dependencies.

B. Parametric studies
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FIG. 4. Performances of selected agents as a function of time for FIG. 6. Utility deviation 1-U vs scaled time: Effects of the
a mixed game with agents having different adaptation schemes. TH&UmMber of strategieS and memoryM. Simulations were done with
performances are scaled such that the mean performance of all the&=1001, 7=40, n=0.3, and ensemble averaging each curve over
agents is zero. At=3120, six agents begin to modify their strate- 50 runs.
gies such that three of thefthe three uppermaostised adaptation
scheme(D) and the other threéhe next three from topused ad- fit reasonably to a power-law form-1U ~ (scaled time)*,
aptation scheméA). All the rest of the agents played the basic with x~1.9. However, in the late time behavior of curves
minority game without adapting; the performances of only the bestwith small adaptation times=10 and 20, we see a slowing
the worst, and two randomly chosen agents are shtihwa four  down in the utility improvement to apparently constant val-
lowermost curves Simulations were done withN=801, M =8, ues of utility, which for7=20 turns out to be nearey
$=16,n=0.3, andr=80. =1 than forr=10. On the other hand, for memoh =7

and 8(two lower panelsthe overall behavior is fairly similar

In Fig. 5 we show the effect of changing the adaptationto that for smaller memoryM =5 and 6, though the total
time 7=10, 20, 40, 80, and 16(ach pangland memory improvement in utility appears to be considerably less within
M =5, 6, 7, and gseparate panelsFor memoryM =5 and  the total simulation time used. In fact the change in the effi-
6 (two upper panejsand for all the studied adaptation times ciency of the games seems to decrease with increasing
the utility deviation curves after initial transient periods arememory size. This is due to transient period getting longer
found to decrease; thus the games become more efficierdnd utility improvement slowing down or saturating earlier.
This transient appears to be directly proportional to the adfin the M =8 panel the utility saturation is clearly visible at
aptation time, and the curves show more or less a lineaate times for the adaptation times=10, 20, and 40, while
decay region in scaled time, such that each region seems {gr r=80 a slowing down in the utility improvement first

3|1o‘2 :|>1o'2
- -
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10° '—'fjg 10°F :gg
« 1 .
Je0 M=5 | wie0 M=6
10 0 1 2 10 0 1 2
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FIG. 5. Utility deviation 1-U vs scaled time: Effects of the FIG. 7. Utility deviation 1-U vs scaled time: Effects of the
adaptation timer and memoryM. Simulations were done withl fraction n of the worst performing agents and memafy Simula-
=1001, S=10, andn=0.3, and ensemble averaging each curvetions were done wittN=1001, S=10, 7=80, and ensemble aver-
over 50 runs. aging each curve over 50 runs.
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appears, possibly turning later to saturation, and7ferl60 10" ' . . . . : : .

. .. . . - - M=5, T=20000

is not yet visible but likely to become so even later in scaled o M-5,T-10000
-—-- M=6, T=20000

time). Between early and late time regions-U curves
show a linear decay with an exponentomparable to that
above, though the fitting is unreliable due to shrinkage of the
linear decay region. .

It is interesting to note that longer adaptation times even- b
tually lead to a better utility, i.e., a higher efficiency. This is
because for a higher dimensional strategy spabee to
memory increaseit takes a longer time until sufficiently o5
many histories are gone through to verify the success of -
particular strategy. On the other hand, if we do not allow
enough time for the adaptation to happen, strategies ar
changed too often and even the good ones are likely to be
disregarded. We will discuss this issue later by exploring the
interplay between the adaptation time and simulation or
game time.

In Fig. 6 we show the effect of changing the number of
strategiesS=5, 10, 20, and 4Qeach paneland the memory
sizeM=5, 6, 7, and §separate panelsWe found that for 107 P T Ty T
eachM value the dependence of the utility deviation; U Adaptation time ©
on S is, in terms of a transient, of linear decay with a fitted
power law exponent, and has a late-time saturation behavior FIG- 8. Utility deviation 1-U as a function of the adaptation
quite similar with the dependence on though to a lesser t!mg 7, for different valugs pf memorWI and simulation times
extent. However, unlike previously, increasing the number ofndicated byT). Each point is the time average over the last 500
strategies seems to shift the utility deviation curve slightlyt'me steps of the simulation and ensemble averages over 70 runs.

up, such that the system reaches similar efficiency values tgere appear minima in-1U or efficiency maxima, which
those in Fig. 5 later. On the other hand, the dependence @br T=20000 and the sard show shifts to higher adapta-
the utility improvement on the memory size is as dramatic asion times. Thus we expect that increasing the simulation
in the previous case. time without limits would make the 2 U vs 7 curve behave

In Fig. 7 we show the effect of changing the fraction of monotonically, approaching an asymptotically maximum ef-
the worst performing agents=0.2, 0.3, 0.4, 0.5, and 0.6 ficiency. This can be interpreted that the longer an agent can
(each paneland the memory sized =5, 6, 7, and §sepa- observe its strategies the more certain it can be of their per-
rate panels Once again we found that the dependence of thdormances. On the other hand, if the adaptation time is re-
utility deviation, 1- U onn s in terms of a transient, and of duced too much, crossovers would take place more at ran-
linear decay with a fitted power law exponent, quite similardom. For finite simulation times these curves could give
to the dependence onor S However, increasing the frac- guidance for a preferable adaptation time. Intuitively, one
tion of the worst performing agents seems to push the latecould guess that a good adaptation time would be close to
time utility slowing down or saturation to even later scaled2", because if the occurrence of histories were uniformly
times. Once again the effect of memory size is as dramatic a@istributed this would constitute the expectation time for an
before. agent to go through all the histories once and thus see how

In Figs. 5—7 we see oscillations specifically in panels withsuccessful a response determined by a strategy has been in
larger memory sizes. They seem to be proportional ¥o 2 €ach case.
i.e., the number of histories in the game. The reason for these
oscillations is most probably the approximately periodic rep- IV. DISCUSSIONS
etition of histories: part of the agents stick to their favorite
strategies, which are repeated as a particular history next In this paper we have studied various genetic algorithm
time around. based adaptation mechanisms within the framework of the

Earlier we found that the late-time behavior of the scaledminority game, and found significant changes in the collec-
utility changes for different adaptation times. This is becauseive and individual behaviors of the agents. It turned out that
larger memory values increase the dimensionality of thehe adaptation mechanism in which the best two strategies
strategy space and thus require longer adaptation times. bre chosen as parents and their offspring strategies replace
order to study this behavior in more detail we have donehe two worst strategies in the agent’s pool leads the system
simulations for several memory siz&6=5, 6, 7, 8, and 9 fastest and nearest to maximum utility or efficiency. The pre-
paired either with the total simulation tim&=10000 or eminence of the best adaptation mechanism can be seen at
20000. In Fig. 8 we present the results for the utility devia-the system level as well as at the agent level: fluctuations in
tion 1—U vs the adaptation time, which for a givenM  x, smooth down quickly and the agents outperform those
shows an overall utility improvement due to doubling theusing other mechanisms participating in the same game. The
total simulation time. For shortef=10000 and allM’s  overall success of genetic algorithm based adaptation mecha-
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nisms in minority games suggests they also be used in otheneaning that at each time step the number of agents winning
game theoretic optimization problems. It should be noteds as large as possible, i.e., the number of satisfied individual
that the minority game deviates from the traditional optimi-agents is at a maximum. In conclusion it seems possible that
zation problems because it does not include a particular olsimple adaptation schemes and especially those mimicking
ject function or functions to be maximized. This makes ournature could further extend the class of phenomena which
findings very interesting, exposing a certain characteristic ofyinority game type models would be able to describe.

the minority game, namely, if agents have the possibility to

adapt through the responses to the stimuli, they drive to-

wards a state where their own performance improves anq the ACKNOWLEDGMENTS
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