
Statistical model with a standard G distribution

Marco Patriarca,1,* Anirban Chakraborti,2,† and Kimmo Kaski1,‡

1Laboratory of Computational Engineering, Helsinki University of Technology, P.O. Box 9203, 02015 HUT, Finland
2Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA

(Received 6 February 2004; published 2 July 2004)

We study a statistical model consisting ofN basic units which interact with each other by exchanging a
physical entity, according to a given microscopic random law, depending on a parameterl. We focus on the
equilibrium or stationary distribution of the entity exchanged and verify through numerical fitting of the
simulation data that the final form of the equilibrium distribution is that of a standard Gamma distribution. The
model can be interpreted as a simple closed economy in which economic agents trade money and a saving
criterion is fixed by the saving propensityl. Alternatively, from the nature of the equilibrium distribution, we
show that the model can also be interpreted as a perfect gas at an effective temperatureTsld, where particles
exchange energy in a space with an effective dimensionDsld.
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I. INTRODUCTION

Statistical physicists like to understand how and why sys-
tems evolve from an initial state toward an equilibrium mac-
roscopic state. The equilibrium state, far from being just the
“final state” of the dynamical evolution, actually reflects the
details of the underlying dynamics. To write down the “mi-
croscopic equation” governing the dynamics of the evolution
is a major goal. The various probability distributions, result-
ing from the different corresponding microscopic equations,
have a relevant interest, in that they can be used to derive
most of the macroscopic properties of the system. One of the
foremost examples is the Maxwell-Boltzmann distribution
for the velocities, which can be obtained as a solution of the
equation which Boltzmann proposed for the evolution of the
probability distribution for a dilute gas.

One of the current challenges is to write down the micro-
scopic equation which would correspond to the century old
Pareto law[1] in Economics, stating that the higher end of
the distribution of incomefsxd follows a power-law

fsxd ~ x−1−a,

where x is the income(money) and the exponenta has a
value in the interval 1–2[2–5]. To this aim, several studies
have been made to investigate the characteristics of the real
income distribution and provide theoretical models or expla-
nations. For example, Levy and Solomon studied the gener-
alized Lotka-Volterra equations in relation to power-law
wealth distribution[6,7], whereas Ispolatovet al. [8] studied
random exchange models of wealth distributions. Other re-
lated studies of exchange models in closed economies have
followed [9–14] and, recently, some different approaches

have been used to study wealth distributions[15–18]. In gen-
eral, from these studies it emerges that it is possible to obtain
power law distributions in the framework of some economy
models, whereas other models predict exponential tails of the
income distribution. However, an understanding of the de-
pendence of the distributions on the underlying mechanisms
and parameters is still missing. For this reason, it is our gen-
eral aim to study a statistical model of closed economy,
which can be either solved exactly or simulated numerically,
and analyze the relation between the microscopic equation
and the kind of macroscopic money distribution it results in.
This study can be of particular interest, since it can provide
some insight as to under what conditions the Pareto law
arises.

In this paper, we study a statistical model consisting ofN
basic units which interact with each other by exchanging a
physical entityx, according to a given microscopic law with
one constant parameterl. We study the stationary probabil-
ity distributions fsxd for different values ofl. Furthermore,
we verify through numerical studies that the final form of the
equilibrium distribution fsxd is that of a standard Gamma
distribution. Then in Sec. II, we interpret the model as a
simple closed economy in which agents trade money and
have a saving criterion fixed by the saving propensityl. In
Sec. III, using the nature of the equilibrium distribution, we
show that the model can also be interpreted as a perfect gas
at an effective temperatureTsld, made up of particles ex-
changing energy in a space with an effective dimension
Dsld. Finally, in Sec. IV, we draw conclusions.

II. THE MODEL ECONOMY

We begin by considering a simple model of closed
economy, in whichN agents can exchange money in pairs
between themselves. All the agents can be initially assigned
the same money amountx̄, since this condition is not restric-
tive. Agents are then let to interact and, at every “time step,”
a pair si , jd is randomly chosen and the transaction carried
out. During the transaction, the agent money amountsxi and
xj undergo a variation, in which they are randomly reas-
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signed between the two agents—with or without “savings”
criterion. We are aware that modeling economy systems by
agents exchanging money randomly sounds unrealistic, but,
as it appears clearly in the following, the specific form of the
microscopic law is not essential for the issues dealt with in
the paper. Rather, the main point here is its conservative
character. The exchange law is such that the money is con-
served during the transaction, i.e.,xi +xj =xi8+xj8, where xi8
and xj8 are the money values after the transaction. This im-
plies that at any time the average initial moneyx̄ also repre-
sents the average money,kxl; x̄. The generalized equations
which describe the earlier transactions are

xi8 = lxi + es1 − ldsxi + xjd,

xj8 = lxj + s1 − eds1 − ldsxi + xjd, s1d

wherel is called the “saving propensity” ande is a random
number uniformly distributed in the intervals0,1d.

A. Case with l=0

First, we deal with the case where there is no saving cri-
terion andl=0 in Eqs.(1). The exchanges are then made
according to the following law:

xi8 = esxi + xjd,

xj8 = s1 − edsxi + xjd. s2d

It can be noticed that, in this model, agents have no debts
after the transaction, i.e., they are always left with a money
amountxù0 or, equivalently, thatxi is a positive definite
quantity, if x̄.0.

It can be shown that, as a consequence of the conservation
of money, the system relaxes toward a Gibbs money distri-
bution [9–11]:

f1sxd =
1

kxl
expS−

x

kxl
D , s3d

where kxl represents the average money. This means that,
after the relaxation, most of the agents have a very small
amount of money, while the number of very rich agents is
exponentially small. In other words, for a givenx8.0, the
number of agents withx.x8, as well as the total amount of
money they own, exponentially decreases withx8. The equi-
librium state represented by the Gibbs distribution(3) has
been shown to be robust, in that it is reached independently
of the initial conditions and also in models with multiagent
transactions.

We have reobtained the exact Gibbs solution for the case
l=0 by numerical simulations of a system withN=500
agents, each agent having initially a money amountx̄=1. The
system was evolved for 106 time steps—i.e., transactions—in
order to reach equilibrium, and the final equilibrium distri-
butions were averaged over 105 different runs. Figure 1
shows that the numerical results(open circles forl=0) are in
good agreement with the Gibbs distribution(continuous
line).

B. Case with l.0

We now deal with the case where there is a saving crite-
rion, by assuming that the saving propensity, which repre-
sents the fraction of money saved before carrying out the
transaction, is nonzero, i.e.,l.0 [9,11]. Conservation of
money still holds,xi +xj =xi8+xj8, but the money which can be
reassigned in a transaction between theith and thej th agent
has now decreased by a factors1−ld. The exchanges are
made according to Eqs.(1), which can also be rewritten as
follows:

xi8 = xi + Dx,

xj8 = xj − Dx,

Dx = s1 − ldfexj − s1 − edxig, s4d

in which money conservation is manifest.
We studied the equilibrium distribution of this model

through numerical simulations, for various values ofl, for
N=500 agents, again each agent having moneyx̄=1 in the
initial state. In each simulation a sufficient number of trans-
actions, as far as 107, depending on the value ofl, was used
in order to reach equilibrium. The final equilibrium distribu-
tions, for a givenl, were obtained by averaging over 105

different runs. The numerical data are shown in Fig. 1(cases
lÞ0).

We found an analytic form for the equilibrium distribu-
tion, for a givenl s0,l,1d, which turns out to fit ex-
tremely well all data[19]. The function is conveniently ex-
pressed in terms of the parameter

FIG. 1. Equilibrium money distributions for different values of
the saving propensityl, in the closed economy model defined by
Eqs. (2) and (4). The continuous curves are the fitting functions,
defined in Eq.(6) with the values ofn governed by Eq.(5). Note
that for the simulationkxl=1.
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nsld = 1 +
3l

1 − l
. s5d

This particular form ofnsld was suggested by a mechanical
analogy, discussed in Sec. III, between the closed economy
model withN agents and the dynamics of a gas ofN inter-
acting particles. Then the money distributions, for arbitrary
values ofl, are well fitted by the function

fnsxd = an x n−1exps− nx/kxld,

an =
1

Gsnd
S n

kxl
Dn

, s6d

wheren is defined in Eq.(5) and the prefactoran, whereGsnd
is the Gamma function, is fixed by the normalization condi-
tion e0

`dx fnsxd=1.
The fitting curves for the distribution(continuous curves)

are compared with the numerical data in Fig. 1. The fitting
describes the distribution also for small values offsxd, as
shown by the linear-logarithmic plots in Fig. 2. In Fig. 3, the
numerical values of the parametersnsld andansld obtained
directly from fitting the data(shown as dots) are compared
with the respective fitting functions(5) and (6) (shown as
continuous curves).

By introducing the rescaled variable

j = nx/kxl, s7d

the probability distribution(6) can be rewritten as

kxl
n

fnsxd =
1

Gsnd
j n−1 exps− jd ; gnsjd, s8d

wheregnsjd is the standard Gamma distribution[20,21]. The
cumulative distribution forgnsjd is the incomplete Gamma
function Gsj ,nd=ej

` dj8 gnsj8d:

gnsjd ; −
d

dj

Gsj,nd
Gsnd

. s9d

The Gibbs distribution(3) is a special case forn=1. The
termkxl /n, on the left-hand side of Eq.(8), is just the scaling
factor appearing when the change of variable, fromj to x, is
made in the last equation in order to obtain the distribution
fnsxd for the variablex.

We notice that, with respect to the Gibbs distribution(3),
the distribution defined by Eqs.(6) contains the powerxn−1

and the factorn in the exponential, which qualitatively
change the distribution shape. First, they lead to a mode,xm,
different from zero. The mode is shown as a function of the
parameterl in Fig. 4, where the dashed curve represents the
theoretical prediction that the modexm=3l / s1+2ld obtain-
able from Eq.(6). Second, the presence of the factorn is
relevant for the mechanical analogy, considered in detail in
Sec. III. Finally, in the limitl→1 (i.e., n→`), the distribu-
tion fnsxd tends to a Diracd function, peaked around the
average valuekxl. A qualitative picture of the evolution of
the shapes of thefnsxd’s, for l going from zero to unity, is
obtained by inspection of the various curves in Fig. 1. A
more rigorous derivation of the asymptotic distribution for
l→1 can be made by studying the characteristic function
fsqd [20,21]. The Gamma distributiong1sjd for the dimen-
sionless variablej has a characteristic functionf1sqd

FIG. 2. Same quantities as in Fig. 1, but on a linear-logarithmic
scale. Note that for the simulationkxl=1.

FIG. 3. The parametersn (top) andan (bottom) vs l, obtained
from numerical data(dots) and the corresponding analytical formu-
las(continuous curves) given by Eqs.(5) and(6), respectively. Note
that for the simulationkxl=1.
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=e0
+`dj expsiqjdg1sjd=1/s1−iqd. The characteristic func-

tion of the Gibbs distributionf1sxd in Eq. (3) is obtained by
rescalingq by the constant factorx/j=kxl:

f1sqd = s1 − iqkxld−1. s10d

The characteristic function of the generic Gamma distribu-
tion gnsjd is simply given by thenth power off1sqd [20,21],
fnsqd=1/s1−iqdn. Analogously, the corresponding charac-
teristic function offnsxd, Eq. (6), is obtained by scalingq by
x/j=kxl /n:

fnsqd = s1 − iqkxl/nd−n. s11d

Thus, in the limitn→` sl→1d, one obtains

fnsqd → expsiqkxld. s12d

The corresponding distribution is obtained by transforming
back the characteristic function, i.e.,

fnsxd = s2pd−1E
−`

+`

dq exps− iqxdfnsqd → dsx − kxld.

s13d

This limit shows that a large saving criterion leads to a final
state in which economic agents tend to have the same
amount of money and, in the limit ofl→1, they all have the
same amountkxl.

III. THE GAS MODEL

The equilibrium distributions(3) can also be interpreted
as the Gibbs distribution of the energyx, for a gas at tem-
peratureT=kxl /kB. This establishes a link between the type
of closed economy models considered here and statistical
systems, suggesting a re-interpretation of the economy
model in terms of a mechanical system of interacting par-
ticles. The introduction of a saving parameterl.0 changes
the shape of the Gibbs distribution into that of a Gamma
distribution, but the correspondence with a mechanical sys-
tem is lost only apparently. In fact, the Gibbs distribution(3)
can represent the distribution of kinetic energyx only in

D= two dimensions, when its average value is given by
kxl2=2skBT/2d. In all other casessDÞ2d, it is easy to show,
starting from the Maxwell-Boltzmann distribution for the ve-
locity in D dimensions, that the equilibrium kinetic energy
distribution fsxd coincides, apart from a normalization factor,
with the Gamma-distributiongnsjd with n=D /2 for the re-
duced variablej=Dx/2kxlD:

fsxd =
S D

2kxlD
DD/2

GSD

2
D xD/2−1 expS−

Dx

2kxlD
D ,

kxlD = Dkxl1 =
DkBT

2
, s14d

wherekxlD represents the average value of kinetic energy in
D dimensions. The analogy between the factorD in the ar-
gument of the exponential function in Eq.(14) and the analo-
gous factorn in Eq. (6) is to be noticed. The main difference
is that, whileD is an integer number by hypothesis, the pa-
rameternsld can assume in general any real values larger
than or equal to one.

In Eq. (14) temperature appears implicitly asT
=2kxlD /kBD. This suggests that also in the closed economy
model considered above the effective temperature of the sys-
tem should be defined askxl /n, rather thankxl. This is a
natural consequence of the fact that the average value of
kinetic energy inD dimensions is proportional toD, due to
the equipartition theorem, and that an estimate of the ampli-
tude of thermal fluctuations, which is independent of its ef-
fective dimension, can be obtained from the ratiokxlD /D.

Direct comparison between Eqs.(14) and (6) leads to a
formal but exact analogy, between money in the closed
economy model considered earlier, withN agents, saving
propensity 0ølø1, and given average moneykxl, on one
hand, and kinetic energy in an ensemble ofN particles inD
dimensions at temperatureT, on the other, if the effective
dimension and temperature are defined as

Dsld = 2 nsld =
2s1 + 2ld

1 − l
,

Tsld =
kxl

nsld
= kxl

1 − l

1 + 2l
, s15d

respectively. This equivalence can be qualitatively under-
stood in terms of the underlying microscopic dynamics by
considering the example of a fluid of interacting particles. In
one dimension, particles undergo head-on collisions, in
which they can exchange the total amount of energy they
have. In an arbitary(large) number of dimensions, however,
this is not possible for purely kinematic reasons and only a
fraction of the total energy is actually released or gained on
average in a collision. Since the equipartition theorem im-
plies that on average kinetic energy is equally shared among
the D dimensions, one can expect that, during a collision,
only a fraction,1/D of the total energy is exchanged(and

FIG. 4. Variation of the mode with the parameterl. Dots rep-
resent the numerical data, while the dashed curve was obtained
theoretically.
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that a corresponding fractionl,1−1/D is “saved”). This
estimate,1/D of the exchanged energy is to be compared
with the expression for the fraction of exchanged money ob-
tained from Eq.(5) using n=D /2, namely 1−l=3/sD /2
+2d, which was in fact found starting the fitting of the nu-
merical data from a function prototype of a form similar to
1/D.

IV. CONCLUSIONS

We have studied a statistical model, which can be inter-
preted as a generalization of the simple closed economy
model, in which a random reassignment of the total agent
moneyx, involved in the transaction, takes place. The gen-
eralized model is characterized byN agents carrying out
transactions according to a saving criterion, determined
quantitatively through a saving propensityl.0. Alterna-
tively, it can be considered as representing a gas ofN inter-
acting particles which on average exchange only a fraction of
their kinetic energyx, during a collision. We have shown the
existence of such an analogy, by empirically obtaining the
corresponding analytical solutionfnsxd for the equilibrium
distribution from numerical data.

In both cases the equilibrium distribution can be written
as a Gamma distributiongnsjd, where the reduced variable is
given byj=nx/ kxln andkxln represents the average value of
x, given by kxln=nkxl1. The equivalence is represented by
n=nsld=1+3l / s1−ld being a function of the saving pro-
pensity on one hand(kxl1 is the average value forl=0), and
by n=D /2 being just the half of the number of dimensions,

on the other hand(kxl1 being in this case the average value in
two dimensions).

The fact that we obtain basically the same equilibrium
distribution, characterizing the kinetic energy of a gas of
particles, suggests some general considerations about closed-
economy models. The mechanical analogy illustrated earlier
can be addressed to the fact that the system is described
statistically by a microcanonical ensemble, just as a closed
mechanical system, in which the exchanged quantity is con-
served. Thus, a saving propensity larger than zero or any
other change in the microscopic law can be expected to lead
to a different shape of the equilibrium distribution, as shown
in the present work, in which, e.g., the effective number of
dimensions and temperature may be different. However, the
simple fact that the money is conserved implies that one
cannot obtain an arbitrary distribution but, rather, only equi-
librium distributions related directly to the microcanonical
ensemble.
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