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Abstract

Some general features of statistical multi-agent economic models are reviewed, with particular attention to the

dependence of the equilibrium wealth distribution on the agents’ saving propensities. It is shown that in a finite system of

agents with a continuous saving propensity distribution a power-law tail with Pareto exponent a ¼ 1 can appear also when

agents do not have saving propensities distributed over the whole interval between zero and one. Rather, a power-law can

be observed in a finite interval of wealth, whose lower and upper ends are shown to be determined by the lower and upper

cutoffs, respectively, of the saving propensity distribution. It is pointed out that a cutoff of the power-law tail can arise also

through a different mechanism, when the number of agents is small enough. Numerical simulations have been carried out

by implementing a procedure for assigning saving propensities homogeneously, which results in a smoother wealth

distributions and correspondingly wider power-law intervals than other procedures based on random algorithms.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical mechanical models of closed economy systems have received considerable attention in recent
years due to the fact that they seem to predict realistic wealth and income distributions shapes from a simple
underlying dynamics, similar to that of microscopic models of classical statistical mechanics [1–27]. For an
overview of the current situation of these models see Ref. [27].

In fact, as found in empirical distributions, they can reproduce a Boltzmann distribution at intermediate
and a power-law at higher values, see e.g. Refs. [28–32]. A power-law form in the tail of statistical distributions
was observed more than a century ago by the economist Pareto [33], who found that the wealth of individuals
e front matter r 2006 Elsevier B.V. All rights reserved.
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in a stable economy has a cumulative distribution F ðxÞ / x�a, where a, the Pareto exponent, has a value
between 1 and 2.

In this paper, we consider models in which N agents interact exchanging a quantity x, that can be
interpreted as a measure of the agents’ wealth, expressed in money units. Depending on the parameters of the
model, in particular on the values of the saving propensities flig (i ¼ 1; . . . ;N) of the N agents, the equilibrium
wealth distribution can be a simple Boltzmann distribution for li ¼ 0 [3,4,9], a Gamma distribution with a
similar exponential tail but a well-defined mode x̄40 for li ¼ l040 [1,2,6,10,14,15], or a distribution with a
power-law tail for randomly distributed li [16,18]. It has been recently recognized [18,23] that the observed
power-law arises from the mixture of Gamma distributions corresponding to agents with different values of l.
That is, in systems where the saving propensity is distributed according to an arbitrary distribution function
gðl), individual agents relax toward a Gamma distribution similarly to systems with a global saving propensity
l0, with the important difference that in this case the various Gamma distributions corresponding to different
l’s will mix in such a way to produce a power-law.

In order for the power-law F ðxÞ / x�1 to be produced, a special role is played by agents with values of the
saving propensity close to l ¼ 1: altering this part of the l-distribution can strongly modify the tail of the wealth
distribution [18]. The aim of the present paper is to further investigate quantitatively this important point, by
studying in general terms the relation between the saving propensity distribution and the wealth distribution tail.
We begin in Section 2 by recalling the main features of statistical multi-agent models. In Section 3 we focus on
the relation between saving propensity and wealth distribution. First, we show that when the number of agents is
low, discreteness effects may show up as an upper cutoff of the wealth power-law tail. Then through numerical
simulations we illustrate how—even when the number of agents is high—the lower and upper cutoff of the
saving propensity distribution determine those of the wealth distribution power-law. This is further discussed
with some examples of realistic wealth distributions. Results are summarized in Section 4.

2. Statistical multi-agent models

In statistical multi-agent models N agents interact with each other through pair interactions in which a
quantity x, generally referred to as ‘‘wealth’’ in the following, is exchanged. Each agent i (i ¼ 1; . . . ;N) is
characterized by the wealth xi and, possibly, by some parameters, such as the saving propensity li. The time
evolution of the system is carried out by extracting randomly at every time step two agents i and j, who
exchange an amount of wealth Dx between them,

x0i ¼ xi � Dx,

x0j ¼ xj þ Dx. (1)

It can be noticed that in this way the quantity x is conserved during the single transactions, x0i þ x0j ¼ xi þ xj,
where x0i and x0j are the agent wealths after the transaction has taken place.

2.1. The basic model

In a basic version of the model Dx is assumed to have a constant value [3–5],

Dx ¼ Dx0, (2)

or to be proportional to the initial wealths [1,2,9],

Dx ¼ �̄xi � �xj, (3)

where � is a random number uniformly distributed between zero and one and �̄ ¼ 1� �. The form of Dx

defined by Eq. (3) produces a random reshuffling of the total wealth, given by the sum of the wealths of the
two agents [9], since Eq. (1) can be rewritten as

x0i ¼ �ðxi þ xjÞ,

x0j ¼ �̄ðxi þ xjÞ. (4)
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Fig. 1. Linear (left) and semi-log (right) plots of the probability density of wealth x from numerical simulations (dots) for various values of

the global saving propensity l in the interval ½0; 1Þ, compared with the theoretical curves (continuous lines) defined by Eqs. (8)–(10). The

curve for l ¼ 0 is the Boltzmann distribution (5).
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These dynamics rules, together with the constraint that transactions can take place only if x0i40 and x0j40,
lead to an equilibrium state characterized by an exponential distribution,

f ðxÞ ¼ hxi�1 expð�x=hxiÞ (5)

and one can identify the effective temperature Tl of the system as the average wealth hxi (curve with l ¼ 0
in Fig. 1).
2.2. Models with a global saving propensity

A first generalization toward a more realistic model is based on the introduction of a saving criterion
or, equivalently, of a dependence of the exchanged wealth Dx on the current wealths of the agents. In a
model pioneered by Angle [1,2] and inspired by the Surplus Theory of economic development, one can
have either a symmetrical or asymmetrical wealth exchange, depending on the relative richness of the
two agents. In another model [10] agents save a fixed fraction l (here referred to as the saving propensity,
with 0 � lo1), independently of their current wealth. Both models lead to an equilibrium Gamma
distribution. In the following we consider the latter model [10], whose evolution is described by the following
equations:

x0i ¼ lxi þ �ð1� lÞðxi þ xjÞ,

x0j ¼ lxj þ �̄ð1� lÞðxi þ xjÞ, (6)

corresponding to a Dx in Eq. (1) given by

Dx ¼ ð1� lÞ½�̄xi � �xj�. (7)

The corresponding equilibrium distribution is well fitted by the Gamma distribution [20,21]

f ðxÞ ¼
1

GðDl=2Þ
xDl=2�1 expð�xÞ � gDl=2

ðxÞ (8)
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as shown in Fig. 1. Here the dimensionless variable

x ¼
x

Tl
(9)

is just the variable x rescaled with respect to the effective temperature Tl and

Dl

2
¼ 1þ

3l
1� l

¼
1þ 2l
1� l

,

Tl ¼
1� l
1þ 2l

hxi. (10)

The parameter Dl plays the role of an effective dimension, since the Gamma distribution gnðxÞ given by Eq. (8)
is identical to the Maxwell–Boltzmann distribution of kinetic energy for a system of molecules at temperature
Tl in Dl dimensions (of course only for integer values of Dl) [21,23]. In further support of this analogy, it is
worth noting that Tl and Dl are related to each other through the equipartition theorem,

hxi ¼
DlTl

2
. (11)

The equivalence between kinetic theory and multi-agent economic models, suggested by the basic version of
the kinetic multi-agent models [1,3–5,9], can thus be extended to values l40 [23], as summarized in Table 1.

While l varies from l ¼ 0 to 1, the effective dimension Dl increases monotonically from 2 to 1. In fact
in a higher number of dimensions the fraction of kinetic energy exchanged between particles during a
collision is smaller. At the same time, the market temperature Tl decreases with increasing l, showing
smaller fluctuations of x during trades, consistently with a higher saving. One can notice that Tl ¼

ð1� lÞhxi=ð1þ 2lÞ � ð1� lÞhxi is on average the amount of wealth exchanged during an interaction between
agents, see Eqs. (6).

It is to be noticed that the saving propensity l introduced in this and the following models does not
necessarily represent the agent’s investment strategy during a single wealth exchange. In fact stochastic
processes provide in general a coarse grained description of the time evolution of a system: in the models
considered here this means that one time step does not correspond to a single but rather to a large number of
actual interactions between agents, the parameter l only modeling the fraction of wealth which on average an
agent saves in the end of them. These transactions may be for instance wealth exchanges of various type,
trades, or investments, which are influenced by many other parameters of the global system. Thus the
parameter l is determined not only by the particular strategy of an agent, but also, e.g., on the ability of an
agent to carry out a transaction in a fruitful way, on the specific possibilities of an agent to exploit a favorable
situation or save resources, etc. The approximation which characterizes the type of models considered here is
in the assumption that all these factors, when acting together and averaged over a large number of agent
interactions, can be modeled by a single parameter l. A natural extension of this model is then one with agents
characterized by different saving propensities, as discussed in the following section.
Table 1

Analogy between physical kinetic and economic multi-agent model

Physical model Economic model

Exchanged quantity E ¼ energy x ¼ wealth

Units N particles N agents

Interaction Collision Trade or exchange

Dimension Integer D Real number Dl

Equipartition theorem kBT ¼ 2hEi=D Tl ¼ 2hxi=Dl

Reduced variable Z ¼ E=kBT x ¼ x=Tl

Distribution f ðZÞ ¼ gD=2ðZÞ f ðxÞ ¼ gDl=2
ðxÞ
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2.3. Models with a continuous distribution of saving propensity

The basic model and the model with a global saving propensity produce equilibrium distribution
functions—the Boltzmann and the Gamma distributions, respectively—that have been shown to interpolate
well real data at small and intermediate values of wealth [1,2,6,28,34]. However, they still predict a distribution
which is qualitatively different from the power-law found empirically at large values of wealth [27].

This is instead accomplished by various statistical models in which agents have realistically been diversified
from each other, e.g. by assigning them different saving propensities li [15,16,18,19,22,23,35,36]. In particular,
uniformly distributed li in the interval ½0; 1Þ, closed at l ¼ 0 and open at l ¼ 1, have been studied numerically
in Refs. [16,18]. This model is described by the trading rule

x0i ¼ lixi þ �½ð1� liÞxi þ ð1� ljÞxj�,

x0j ¼ ljxj þ �̄½ð1� liÞxi þ ð1� ljÞxj�, (12)

or, equivalently, by a Dx—as defined in Eq. (1)—given by

Dx ¼ �̄ð1� liÞxi � �ð1� ljÞxj. (13)

One of the main features of this model, which is supported by theoretical considerations [19,22,35–37], is that
the wealth distribution exhibits a robust power-law tail,

f ðxÞ / x�a�1, (14)

with the Pareto exponent a ¼ 1 largely independent of the details of the l-distribution.
An example of such a distribution is shown in Fig. 2-top left for a system of 1000 agents with a saving

propensity li uniformly distributed in the interval 0 � lo1.

3. Saving propensity and wealth distribution

In this section, we consider systems of interacting agents whose saving propensities are continuously
distributed between 0 and 1 with a given probability density gðlÞ, in order to study how some features of gðlÞ
affect the equilibrium form of the wealth distribution f ðxÞ.

3.1. Wealth distribution at small and intermediate values of wealth

Even if the equilibrium distribution obtained from the basic model, that is the simple exponential function
in Eq. (5), well describes real distributions at intermediate values of x, it predicts neither a significant fraction
of rich agents nor a power-law tail. The fraction of agents outside a given interval ð0;xÞ—that is the
complementary cumulative distribution function—has a pure exponential form, F ðxÞ ¼ expð�x=hxiÞ and the
mode of the distribution is x̄ ¼ 0, so that most of the agents have a wealth close to zero. Real data suggest a
mode x̄40, which can be obtained through the introduction of a global saving propensity l40 [1,2,6,10] since
it leads to an equilibrium Gamma distribution [1,2,6,20,21], see Fig. 1.

3.2. Power-law distribution as a mixture of Gamma distributions

A remarkable feature of the equilibrium distribution, noticed in Ref. [18], is that—in spite of the resulting
power-law tail—the individual partial wealth distributions of single agents with a given li are not of a power-
law type, but have a well defined mode and an exponential tail, similarly to the case of a global saving
propensity. In fact we found [23] that the overall distribution can be resolved as a mixture of individual
Gamma distributions with l-dependent parameters. In particular, the mode and the average value of the
partial distributions diverge as hxðlÞi�1=ð1� lÞ for l! 1 [18,23].

Fig. 2 refers to a system of N agents with random saving propensities uniformly distributed between
l ¼ 0 and 1 and illustrates how agents with different values of l contribute to the power-law tail. As shown in
Fig. 2-top right, when the power-law is resolved into the contributions from agents with saving propensity in
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Fig. 2. Wealth distribution in a system of 1000 agents with saving propensities uniformly distributed in the interval 0 � lo1. Top left:

total distribution on the whole x-range. Top right: total (dotted line) and partial (continuous lines) distributions. Each continuous line

(from left to right) represents the partial distribution of agents with l 2 ½jDl; ðj þ 1ÞDlÞ, with Dl ¼ 0:1 and j ¼ 0; . . . ; 9. Bottom-left: the

partial distribution of agents with l 2 ½0:9; 1Þ is further resolved into the contributions from the subintervals l 2 ½0:9þ jDl; 0:9þ ðj þ
1ÞDlÞ with Dl ¼ 0:01. Bottom-right: the partial distribution of agents with l 2 ½0:99; 1Þ is further resolved into those from the subintervals

l 2 ½0:99þ jDl; 0:99þ ðj þ 1ÞDlÞ, with Dl ¼ 0:001.
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the subintervals l ¼ ½0; 0:1Þ; ½0:1; 0:2ÞÞ; . . . ; ½0:9; 1Þ, one finds Gamma distributions for all the intervals—but the
last one, l 2 ½0:9; 1Þ with the highest l-values, which instead presents a power-law tail.

This result suggests the following remarks. First, it shows that if the upper limit of the l-interval considered
is held fixed at l ¼ 1, while the lower limit is varied—e.g. from l ¼ 0 for the total l-interval to l ¼ 0:9 for the
interval l ¼ ½0:9; 1Þ—only the lower end of the distribution, where the power-law tail begins, is modified.
Secondly, agents with lo0:9 do not seem to contribute to the asymptotic power-law form of the equilibrium
distribution, which is instead due to agents from the sub-interval l 2 ½0:9; 1Þ. This confirms the importance of
agents with l close to 1 for the power-law probability distribution f ðxÞ / x�a�1 ¼ x�2 [18]. Furthermore, this
implies that the introduction of a finite cutoff lM should drastically influence the power-law tail.

In order to confirm the latter point, we have studied how the power-law distribution depends on selected
agents with values of l even closer to 1. However, reiterating the analysis on the partial distribution
corresponding to the last subinterval l ¼ ½0:9; 1Þ led to the results shown in Fig. 2-bottom left: a power-law
shape is observed only in a small region for agents with l40:98, while at x � 20 the power-law breaks down.
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Repeating the analogous analysis on the last subinterval l 2 ½0:99; 1Þ produces partial distributions different
from a power-law, which can be resolved into almost disjoint contributions (Fig. 2-bottom right). Such a
situation prevents any further investigation of the high-l region in the system under consideration.

There are at least two different reasons why the breakdown of the power-law can happen, considered in
greater detail in the following sections: The finite number of agents—i.e., the discreteness of the system—and
the presence of a finite maximum value lM in the l-distribution. These two factors are related—but
not equivalent—to each other: while in a finite system there is necessarily a finite cutoff in the l-distribution,
equal to the maximum saving propensity lM ¼ maxflig, the breakdown of the power-law can take place at
l ¼ l�olM when the number of agents is small enough.
3.3. Effect of the discreteness of the system

A first reason for the breakdown of the power-law at large x, whose effects are visible in Fig. 2, is the
discrete nature of the system, i.e., the finite number of agents N. In fact it has been shown that the peaks visible
at large x after the power-law tail are due to single agents with high saving propensities [23,38].

This effect can be explained as due to the relative magnitude of the average wealth and the corresponding
standard deviation of single-agent distributions for l! 1: given two agents with consecutive values of saving
propensity li and liþ1, the distance between the average values of the respective equilibrium Gamma
distributions grows faster than the corresponding fluctuations [23]. It follows that in a system with a finite
number of agents N, with saving propensities distributed between zero and one according to a continuous
distribution gðlÞ, there is a critical value x�ðNÞ beyond which the wealth distribution is not a monotonous
decreasing function of x and can be resolved into contributions from single agents. This fact may be important
for the statistics of real systems: The minimum resolution Dx needed in order to obtain a statistically
meaningful histogram will grow with x and in any case depend on the x-cutoff of the distribution. If in place of
the probability distribution function one uses the cumulative distribution, the single agent contributions will
show up as sharp steps.

However, as discussed below in Section 3.5, the situation is different when the l-distribution has a cutoff
lMo1. In this case discreteness effects can be prevented from appearing, since the cutoff lM induces a
corresponding finite cutoff xM in the equilibrium x-distribution: one can safely study the limit l! 1 if one
chooses N large enough that xMox�.
3.4. Comparison of different ways to assign saving propensities

Before considering l-distributions with a cutoff lMo1, there is still much one can do, even in systems with l
distributed in the whole interval ½0; 1Þ, in order to improve the smoothness of the x-distribution at large x and
push the critical value x�, at which the power-law breakdown takes place, significantly further. This is relevant
especially when performing numerical simulations.

The peak structure observed at x4x� strongly depends on the particular l-configuration assigned at the
beginning of the simulation. This follows from the fact that the distance liþ1 � li between two consecutive
saving propensity values—the flig’s are assumed to be labeled in increasing order—is more amplified the
closer the values of li and liþ1 are to l ¼ 1. In fact it grows as 1=ð1� lÞ2 [23]. Even if the average value of
liþ1 � li is 1=N, larger distances will exist—due to random fluctuations—and will be mostly responsible for
the resolvability of the distribution into contributions from single agents. In other words, x� is very sensitive to
the fluctuations of the (randomly assigned) distance liþ1 � li. Such fluctuations can be minimized by making
the l-configuration as homogeneous as possible. This can be achieved through a homogeneous assignment of
the l values, which can be realized as explained in Appendix A. As a simple example, here we consider a
uniform l-distribution in the interval ½0; 1Þ. Following the usual procedure, N extractions from a uniform
generator of random numbers in ð0; 1Þ are used to set the values flig (i ¼ 1; . . . ;N). Alternatively, one can
assign analytically li ¼ i=N (i ¼ 0; . . . ;N � 1). In this case one still recovers the same uniform distribution
gðlÞ ¼ 1 for 0 � lo1 in the continuous limit (N !1), but from a distribution which is originally already
smooth, in that the distances liþ1 � li ¼ 1=N are constant.
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Fig. 3. Equilibrium wealth distributions in a system with N ¼ 106 agents after 1012 trades. Left: wealth distribution from a l-distribution
obtained by random generation of the l-values in the interval ½0; 1Þ. Right: from a uniform l-distribution obtained by setting li ¼ i=N,
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The differences between the two ways of assigning the l-distribution are best shown through the
comparison of the corresponding equilibrium wealth distributions: in the example of Fig. 3 the x-distribution
on the left has been obtained by a random extraction of the values of li, while the distribution on the right has
been obtained by setting li ¼ i=N (i ¼ 0; . . . ;N � 1). In the rest of the paper we use the homogeneous—rather
than the random—assignment of the li for its convenience in numerical simulations, since it leads to a larger
x� and therefore a wider x-interval in which the power-law is observed.
3.5. Influence of a saving propensity cutoff lM

In this section, we study systems of interacting agents with saving propensities distributed uniformly on a
subinterval of the l-range. We assume a l-distribution with an upper cutoff lM,

gðlÞ ¼ l�1M for 0 � l � lM,

0 for lMolo1. ð15Þ

A system of N ¼ 105 agents, with saving propensities distributed according to Eq. (15), has been studied by
varying the cutoff lM between 0:9 and 0:9999. The chosen number of agents N is sufficient to avoid the
appearance of the discreteness effects for all the l-distributions considered.

The most interesting change in the equilibrium wealth distribution when lM is varied concerns the large
x-region. A power-law with the same Pareto exponent a ¼ 1 is observed in a finite x-interval, which shrinks
when lM is decreased, eventually disappearing at lM � 0:9, and enlarges for growing lM, the only upper limit
to it being represented either by the discreteness effects discussed above or the x-range considered. Results are
shown in Fig. 4, in which curves from left to right correspond to increasing values of cutoff from lM ¼ 0:9
to ¼ 0:9997.

These results show that a continuous l-distribution extending as far as a finite cutoff l ¼ lMo1 is sufficient
to have a power-law tail in the x-distribution, with the additional condition that the number of agents N is
high enough to prevent a breakdown of the power-law due to discreteness effects.

Even if contradictory at first sight, it is still true that agents with l close to one are those who determine the
power-law tail, as suggested by numerical experiment [18]: the transition from an exponential to a power-law
form of the distribution tail does not proceed through a global change of the functional form of the
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distribution, but takes place gradually and continuously, as the cutoff lM is increased beyond a critical value
lM � 0:9 toward lM ¼ 1, through an enlargement of the x-interval in which the power-law is observed. By
including additional agents with values of l closer and closer to one, also the cutoff xM increases and
eventually, for lM ! 1, the power-law will extend to the whole positive x-axis. The latter statement cannot be
proved by numerical simulation, but finds its justification in the match between the conclusions suggested by
the numerical results obtained for various types of l-distributions [18] and cutoff values on one hand and the
theoretical predictions for lM � 1 on the other hand [19,22,35,36].

3.6. Constructing a more realistic distribution

In real wealth distributions, an exponential form at intermediate values of wealth is known to coexist
with a power-law tail at larger values. The power-law is due to a small percentage of population, of the order
of a few percent, while the majority of the population with smaller average wealth contribute to the
exponential part.

One can construct a more realistic example of wealth distribution than the exponential or power-law form
alone, starting from the following information:
�
 A global saving propensity l040 is associated to an equilibrium Gamma distribution with a mode x̄40
and an exponential tail.

�
 Agents with high l’s (l � 0:9 to 1) produce a power-law tail, even when there is a finite cutoff in the

l-distribution.

These considerations when taken together suggest that one can construct a more realistic wealth distribution by
choosing a suitable hybrid l-distribution, similarly to what has been done in Ref. [16]: a small fraction of agents
p0 with saving propensities li uniformly distributed in the interval ½0; 1Þ according to Eq. (A.4) and the remaining
fraction 1� p0 with a constant value of the saving propensity l0. The distribution corresponding to p0 ¼ 0:01
and l0 ¼ 0 is shown in Fig. 5. Both an exponential shape at small x-scale and a power-law with exponent a ¼ �1
at large x are observed. It is noteworthy that the condition for the coexistence of an exponential and power-law
form sets p0 to a few percents, in agreement with real data on wealth distributions [27]. In fact, for larger values
of p0 the exponential part shrinks and the power-law dominates the distribution. It is also to be noticed that, due
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Fig. 5. Equilibrium wealth distribution of a population of 105 agents, in which one percent (103 agents) have uniformly distributed saving

propensities in l ¼ ½0; 1Þ, while the rest have l ¼ 0. (a) (semi-log scale): the numerical distribution f ðxÞ (circles) is compared in the small x-

region with an exponential function / expð�3x=5Þ (dotted line). (b) (log scale): The numerical distribution f ðxÞ (continuous line) is

compared with a power-law function / x�2 (dashed line) and the same exponential function of (a) (dotted line). The peaks visible at high x

are due to the discreteness effects discussed in the text. (c) (log scale): The complementary cumulative distribution function F ðxÞ ¼R1
x

dyf ðyÞ (continuous line) is compared with the power-law x�1 (dashed line) and an analogous exponential function / expð�3x=5Þ
(dotted line).
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to the choice l0 ¼ 0, the distribution in Fig. 5 has a mode x̄ ¼ 0. By choosing a more realistic value l0 ¼ 0:2 for
ð1� p0Þ ¼ 99% of the agents and a uniform l-distribution for the remaining p0 ¼ 1%, one still obtains a
distribution in which an exponential and a power-law tail coexist, but also with a mode x̄40, see Fig. 6. The
observed x-cutoff is determined by the l-cutoff of the saving propensity distribution.

The point we would like to address by this example is that a realistic wealth distribution can be
generated by a suitable tuning of the distribution parameters: the large fraction of agents with a small saving
propensity l040, producing a mode x̄40 and an exponential shape at intermediates values of x; the
small fraction of agents with l distributed over the whole interval ½0; 1Þ, leading to a power-law tail; the cutoff
lMo1 of the saving propensity distribution inducing the corresponding finite cutoff xM of the wealth distribution.

4. Conclusions

Within the framework of statistical multi-agent economic models with a continuous distribution of saving
propensity, we have studied how a change in the shape of the saving propensity distribution influences the



ARTICLE IN PRESS

10

1

10-1

10-2

10-3

10-4

10-5

0 2 4 6 8 10

f  
(x

)

x(a)

mixed
exponential

1

10-1

10-2

10-3

10-4

10-5

10-6

10-7

 0.1 1 10 100 1000

f  
(x

)

x(b)

mixed
exponential

Pareto

1

10-1

10-2

10-3

10-4

10-5

10-6

10-7

 0.1 1 10 100 1000

F
 (

x)

x(c)

mixed
exponential

Pareto

Fig. 6. Equilibrium wealth distribution of a population of 106 agents, in which 1% (104 agents) have uniformly distributed saving

propensities l 2 ½0; 1Þ, while the rest have l ¼ 0:2. With respect to the distribution in Fig. 5, this distribution has a mode x̄40. The

meaning of symbols is the same as in Fig. 5.
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corresponding wealth distribution at equilibrium. In particular, we have shown that a continuous saving
propensity distribution with l 2 ½0; lM� and lMo1 generates a power-law at large values of wealth x on a finite

x-interval extending as far as a certain x ¼ xM.
In general, the size of the power-law interval depends on the support of the l-distribution: the upper (lower)

end of (the continuous part of) the saving propensity distribution determines the upper (lower) end of the
power-law in the corresponding equilibrium wealth distribution. We have also pointed out that a different
mechanism may lead to the power-law breakdown, when the number of agents in the system is low enough.
All this can provide useful criteria for modeling real systems and test whether the distributions of
l-distributions match according to this model.

Appendix A. Homogeneous assignment versus random generation of a finite ensemble with a given cumulative

distribution

Here we consider two methods to generate a sequence of N numbers li, with i ¼ 0; . . . ;N � 1. The flig are
assumed in the following examples to be defined in the interval l 2 ½0; 1Þ and become distributed according to
a given distribution function gðlÞ ¼ dGðlÞ=dl, where GðlÞ is the cumulative distribution function, in the
continuous limit (N !1). The first method is based on random extractions, while the second one on
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homogeneous assignments of the l-values. While both methods are based on the inversion of the cumulative
distribution function GðlÞ, with Gð0Þ ¼ 0 and Gð1Þ ¼ 1, and become equivalent to each other in the
continuous limit, they provide significantly different distributions for finite N.

A.1. Random extraction

A well known and simple method for the random extraction of a variable l with probability distribution
gðlÞ ¼ dGðlÞ=dl employs a generator of uniform random numbers and is here recalled for completeness.

Were the variable l uniformly distributed in ð0; 1Þ, the probability to extract a value in the subinterval
ðl; lþ dlÞ would simply be dG ¼ dl, i.e., it would be given by the interval length itself.

For a variable l with a generic probability distribution gðlÞ ¼ dGðlÞ=dla1, the corresponding probability is

dG ¼ gðlÞdl, (A.1)

i.e., the interval dl is now weighted by the probability density gðlÞ. One can notice however on the left-hand side
that the probability to obtain a value of the cumulative distribution between G and G þ dG, corresponding to
the probability to find the independent variable between l and lþ dl, is equal to the interval itself dG, just as in
the case of a uniformly distributed variable. That is, the cumulative distribution function G is a uniform random
variable in ð0; 1Þ. Thus, extracting G uniformly in ð0; 1Þ and inverting G ¼ GðlÞ, one automatically obtains a
random variable l distributed according to the distribution function gðlÞ.

A.2. Deterministic assignment

A distribution, which becomes equivalent to the randomly extracted distribution in the limit N !1, is
based on a homogeneous assignment of the values li and does not make use of random number generators. If
the sequence flig is labeled in order of increasing value, i.e., 0 � l0ol1o 	 	 	olN�1o1, then

LðiÞ ¼ li (A.2)

is a function increasing monotonously with i, which can then be inverted to express i as a function of li and
define the function

GðliÞ ¼
i

N
; i ¼ 0; . . . ;N � 1. (A.3)

This function represents the fraction of agents with saving propensity less than or equal to li, so that it
represents by definition the cumulative distribution function. In fact, in the continuous limit, 0oGðlÞo1 for
every l, Gðl! 0Þ ! 0, and Gðl! 1Þ ! 1. A sequence flig with a cumulative distribution function GðlÞ can
be obtained by inverting Eq. (A.3) for i ¼ 0; . . . ;N � 1.

This procedure can also be understood in the following way. In this problem the order of the assignment of
the l-values is not relevant, since they are static parameters characterizing the agents. Thus instead of
assigning the li’s with the help of a random variable, one can take the discrete values l ¼
f0; 1=N ; 2=N; . . . ; ðN � 1Þ=Ng to obtain the most homogeneous l-distribution available. One could make
the distribution more homogeneous in ð0; 1Þ by shifting all the values flig by Dl=2 ¼ 1=2N but this correction
will be neglected here.

Here are a few examples to illustrate the application of this method.
Uniform distribution: The cumulative distribution function of a variable l defined on and uniformly

distributed in ½0; 1Þ is GðlÞ ¼ l. Then Eq. (A.3) directly provides the values of li as

li ¼
i

N
; i ¼ 0; . . . ;N � 1. (A.4)

Uniform distribution with an upper cutoff lMo1: In this case the cumulative distribution is

GðlÞ ¼ l=lM if 0 � lolM,

1 if lM � lo1. ðA:5Þ
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The values of li are obtained by inverting Eq. (A.3) for 0 � lolM,

li ¼
i

N
lM; i ¼ 0; . . . ;N � 1. (A.6)

Uniform distribution with a lower and an upper cutoff lmolMo1: Here

GðlÞ ¼ 0 if l 2 ½0; lmÞ,

ðl� lmÞ=ðlM � lmÞ if l 2 ½lm; lMÞ,

1 if l 2 ½lM; 1Þ. ðA:7Þ

Then with the help of Eq. (A.3) in l 2 ½lm; lMÞ one obtains

li ¼ lm þ
i

N
ðlM � lMÞ; i ¼ 0; . . . ;N � 1. (A.8)
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