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Abstract. We discuss the equivalence between kinetic wealth-exchange models, in which
agents exchange wealth during trades, and mechanical models of particles, exchanging
energy during collisions. The universality of the underlying dynamics is shown both
through a variational approach based on the minimization of the Boltzmann entropy
and a microscopic analysis of the collision dynamics of molecules in a gas. In various
relevant cases, the equilibrium distribution is well-approximated by a gamma-distribution
with suitably defined temperature and number of dimensions. This in turn allows one
to quantify the inequalities observed in the wealth distributions and suggests that their
origin should be traced back to very general underlying mechanisms, for instance, the fact
that smaller the fraction of the relevant quantity (e.g. wealth) that agent can exchange
during an interaction, the closer the corresponding equilibrium distribution is to a fair
distribution.
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1. Introduction

The most noted power-law in economics is perhaps the Pareto law, first observed
by Vilfredo Pareto [1–3] more than a century ago. It was found that in an economy
the higher end of the distribution of wealth f(x) follows a power-law

f(x) ∼ x−1−α, (1)

and α is an exponent (now known as the Pareto exponent) which Pareto estimated
to be≈3/2. The exponent value α ∼ 3/2 seems to characterize most of the capitalist
economies in various periods of time. A consequence implied by the Pareto power-
law is a marked inequality in the wealth distribution, characterized by a small
percentage of people holding the majority of wealth.

In 1931, Gibrat [4] suggested that while Pareto’s law is valid only for the high
wealth range, the middle wealth range is given by the probability density

f(x) ∼ 1
x
√

2πσ2
exp

{
− log2(x/x0)

2σ2

}
, (2)
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where x0 is the mean value and σ2 is the variance. The factor β = 1/
√

2σ2 is also
known as the Gibrat index, and a small Gibrat index corresponds to an uneven
wealth distribution.

An unequal wealth distribution is associated not only to these functions, but also
to any other one which is not of the form of a Dirac δ-function. The problem of
the appearance of inequalities seems therefore to be rather general and not neces-
sarily related to a particular shape – e.g. the power-law form of the Pareto law
– of the wealth distribution, even though distributions can vary from case to case
assuming qualitatively different shapes. In fact wealth distribution has always been
a prime concern of economics. Classical economists such as Adam Smith, Thomas
Malthus and David Ricardo were mainly concerned with factor wealth distribu-
tion, that is, the distribution of wealth between the main factors of production,
land, labour and capital. Modern economists have also addressed this issue, but
have been more concerned with the distribution of wealth across individuals and
households. However, it has to be noted that ‘wealth’ is here understood differently
with respect to its common meaning: it represents the total amount of goods and
services that a person receives, and thus it is not necessary that money or cash is
involved; services like public health and education are also counted in, and often
expenditure or consumption (which is the same in an economic sense) is used to
measure wealth. Thus, it is not quite clear how wealth should be defined. There is
also the question that “Should the basic unit of measurement be households or in-
dividuals?” Important theoretical and policy concerns do include the relationship
between wealth inequality and economic growth, and hence the study of wealth
inequality is considered to be very important.

In an attempt to answer some basic questions and provide a foundation to the
complex issues related to the appearance of wealth inequalities, various authors
have independently formulated minimal models of wealth exchange [5–10] which,
while being general enough to catch some universal features of economic exchanges,
are simple enough to be simulated numerically in detail and studied analytically.
In these models a set of agents i = 1, . . . , M , representing individuals or companies
whose state is defined by the respective wealth xi, interact with each other from
time to time by exchanging (a part of) their wealth. Such exchanges are defined by
laws depending on {xi} and also contain some random elements, as detailed below.
A striking analogy was recognized – and actually motivated the introduction of
some of these models – between the statistical mechanics of molecule collisions
in a gas and these minimal models of economy, which are therefore referred to
sometimes as kinetic wealth-exchange models. Such an analogy, not because of its
peculiarity, should be noticed since it signals a possible universal statical mechanism
in action in the dynamical evolution of systems composed by single units, from
gas composed of molecules colliding with each other exchanging their energy to
economic societies in which single units interact by exchanging wealth. This analogy
is being analysed here in more details than done previously [11], and represents the
goal of the investigations presented here.

We begin by recalling the main features of kinetic wealth-exchange models in §2,
concentrating on an example of a model with a fixed saving propensity λ. In §3, it
is shown how the fact that for a saving propensity λ > 0 one obtains an equilib-
rium distribution which is approximately a gamma-distribution γn(x) of order n,
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instead of the Boltzmann law ∼exp(−x/〈x〉) obtained for λ = 0, actually strength-
ens the kinetic analogy between economy systems and a gas in N(λ) dimensions,
with N(λ) a known function of λ [11,12]. A general variational approach based
on the Boltzmann entropy shows that the gamma-distribution γn(x) of order n is
the equilibrium canonical distribution of a system with a quadratic Hamiltonian
H(q1, . . . , qN ) and N = 2n degrees of freedom (q1, . . . , qN ). The analogy is further
discussed in §4, this time through a microscopic approach based on the analysis of
the dynamics of particle collisions in an N -dimensional space. Through mechanical
considerations only based on momentum and energy conservation, it is shown that
collision dynamics in N dimension can be recast in the form of the evolution laws
of kinetic wealth-exchange models, for both λ = 0 and λ > 0, corresponding to a
number of effective dimensions N(λ) > 2. Finally, in §5, conclusions are drawn.

2. Main features of kinetic closed-economy models

Simple social models of wealth exchange have been shown to reproduce many fea-
tures of real wealth distribution well. For instance, the exponential law f(x) ∼
exp(−βx) observed at intermediate values of wealth is reproduced by a many-agent
model system composed of M agents, who are assumed to exchange wealth in pairs
at each iteration, according to the wealth-conserving evolution equations [13]

x′i = ε(xi + xj),
x′j = ε̄(xi + xj). (3)

Here ε ≡ 1− ε̄ is a uniform random number in (0, 1), i and j are the labels of two
agents chosen randomly at each iteration, and (xi, xj) and (x′i, x

′
j) represent the

corresponding wealth before and after a trade, respectively.
More general versions of this model assign a (same) saving propensity λ > 0

to all agents, which represents the minimum fraction of wealth saved during a
trade [5,6,10,14–16]. As an example, in the model of ref. [10] the evolution law is

x′i = λxi + ε(1− λ)(xi + xj) ,

x′j = λxj + ε̄(1− λ)(xi + xj) . (4)

It is to be noticed that while the total wealth is still conserved during a trade,
x′i + x′j = xi + xj , only a fraction (1 − λ) of the initial total wealth is reshuffled
between the two agents during the trade. These models relax toward an equilibrium
distribution well fitted by a gamma-distribution γn(x), as also noted by Angle [6],

β−1f(x) ≡ γn(ξ) =
1

Γ(n)
ξn−1 exp(−ξ),

ξ = βx, (5)

where the scaling parameter β−1 = 〈x〉/n and the parameter 2n(λ) ≡ N(λ), as
shown below, represents an effective dimension of the system and is explicitly given
by [11,12]
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n(λ) ≡ N(λ)
2

= 1 +
3λ

1− λ
=

1 + 2λ

1− λ
. (6)

As the saving propensity λ varies in λ ∈ [0, 1), the effective dimension N(λ) contin-
uously assumes the values in the interval N ∈ [1,∞). It should be noted that the
gamma-distribution is not an exact solution of eq. (4), and the form of the exact
solution is still an open question [17,18].

A comparison between results of numerical simulation of wealth-exchange models
and the gamma-distribution is shown in figure 1, together with some real data for
UK. The zero-saving propensity model of eqs (3) is described by the exponential
curve for λ = 0. The main difference of the curves with λ > 0 with respect to the
exponential distribution is the appearance of a peak: while the average wealth is
unchanged (the system is closed and one still has 〈x〉 = xtot/M , where M is the
total number of agents) the number of agents with a wealth closer to the average
value increases or, in other words, the wealth distribution becomes more fair for
larger λ’s and therefore larger values of the effective dimension N . Eventually,
as shown in ref. [11], f(x) → δ(x − 〈x〉) for λ → 1 (N → ∞) thus becoming a
perfectly fair distribution. As a consequence, measures of the inequality of the
wealth distribution, such as the Gini coefficient, decrease for increasing λ and tend
to zero for λ → 1. In the rest of the paper we discuss the statistical mechanical
interpretation of the equilibrium gamma-distribution defined by eqs (5) and (6).

3. Mechanical analogy from the Boltzmann entropy

It may seem that in going from the exponential wealth distribution obtained for
λ = 0 to the gamma-distribution corresponding to a λ > 0, the link between wealth-
exchange models and kinetic theory has been lost. In fact, the gamma-distribution
γN/ 2(x) represents but the Maxwell–Boltzmann equilibrium kinetic energy distrib-
ution for a gas in N dimensions, as shown in the Appendix of ref. [19]. Here a more
general derivation of the gamma-distribution γN/ 2(x) is presented, in which it is
shown, solely using a variational approach based on the Boltzmann entropy, that
γN/ 2(x) is the most general canonical equilibrium distribution of an N -dimensional
system with a Hamiltonian quadratic in the coordinates. Entropy-based variational
approaches have been suggested (e.g. by Mimkes [20,21]) to be relevant in the de-
scription and understanding of economic processes. For instance, the exponential
wealth distribution observed in real data and obtained theoretically in the frame-
work of the Dragulescu–Yakovenko model discussed above, can also be derived
through entropy considerations. Considering a discrete set of M economic subsys-
tems which can be in one of J possible different states labeled by j = 1, 2, . . . , J
and characterized by a wealth xj , one can follow a line similar to the original Boltz-
mann’s argumentation for the states of a mechanical system [20], by defining the
total entropy as

W{mj} = ln
M !

m1!m2! . . . mJ !
, (7)

where mj represents the occupation number of the jth state; by variation of W{mj}
with respect to the generic mj , with the constraints of conservation of the total

236 Pramana – J. Phys., Vol. 71, No. 2, August 2008



Gamma-distribution and wealth inequality

Figure 1. (Top) Comparison between numerical results (various symbols)
of the equilibrium wealth distribution in the kinetic wealth-exchange models
of closed economy and the corresponding gamma functions (continuous lines)
with suitable parameters (see text for details). (Bottom) Distribution f(x)
of individual weekly income or wealth x in UK for 1992, 1997 and 2002 (fig-
ure adapted from A Chatterjee and B K Chakrabarti, cond-mat/0709.1543v2
using data adapted from G Willis and J Mimkes, cond-mat/0406694).

number of systems M =
∑

j mj and wealth xtot =
∑

j mjxj , one obtains the
canonical equilibrium distribution

mj ∼ exp(−βxj) , (8)

where β = 1/〈x〉 defines the temperature of the economic system.
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Here we repeat the same argumentation for an ensemble of systems described
by a continuous distribution f(x), to show that this approach not only can repro-
duce the exponential distribution, but also the gamma-distribution obtained in the
framework of wealth-exchange models with a saving parameter λ > 0, a natural
effective dimension N > 2 being associated to systems with λ > 0.

The representative system is assumed to have N degrees of freedom (q1, . . . , qN )
and a homogeneous quadratic Hamiltonian, that for convenience is written in the
rescaled form

x = X(q2) ∝ 1
2
q2 =

1
2
(q2

1 + · · ·+ q2
N ) ≡ 1

2
q2, (9)

where q = (q2
1 + · · ·+ q2

N )1/ 2 is the distance from the origin in the N -dimensional
q-space. As a mechanical example, one can think of the N momentum Carte-
sian components (p1, . . . , pN ) and the corresponding kinetic energy function K =
(p2

1 + · · · + p2
N )/ 2m, where m is the particle mass; or of the Cartesian coordi-

nates (q1, . . . , qN ) of an isotropic harmonic oscillator with elastic constant κ and
potential energy U = κ(q2

1 + · · · + q2
N )/ 2. It can be checked – e.g. using the

Stirling approximation for the factorial function – that in the limit of large occu-
pation numbers, the discrete version (7) of the Boltzmann distribution becomes
proportional to − ∫

dyf(y) ln f(y), where the continuous variable y replaces the
discrete label j. For an N -dimensional system, the entropy will be proportional
to − ∫

dq1 . . .
∫

dqNfN (q1, . . . , qN ) ln[fN (q1, . . . , qN )], where fN (q1, . . . , qN ) is the
probability distribution in the N -dimensional space. Then the constraints on the
conservation of the total number of systems reads

∫
dq1 . . .

∫
dqNfN (q1, . . . , qN ) =

const. and that on total wealth is
∫

dq1 . . .
∫

dqNfN (q1, . . . , qN )X(q2) = xtot. In
the end, using the Lagrange method, the equilibrium distribution density can be
derived by functional variation with respect to fN (q1, . . . , qN ) of the effective func-
tional

Seff [fN ] =
∫

dq1 . . .

∫
dqNfN (q1, . . . , qN ){ln[fN (q1, . . . , qN )] + µ + βX(q)}, (10)

where µ and β are two Lagrange multipliers. Before carrying out the variation
explicitly it is convenient to simplify the problem exploiting the invariance of the
Hamiltonian, only depending on the variable q, under rotations in the q-space. The
equilibrium probability density is expected to depend solely on the distance q as
well, i.e., fN (q1, . . . , qN ) = fN (q). This allows the reformulation of the variational
principle as an effective one-dimensional problem in the variable q, by transforming
Cartesian to polar coordinates, so that

∫
dq1 · · ·

∫
dqN (· · ·) →

∫ +∞

0

dq

∫
dΩ (· · ·) ,

where the integration in Ω is over the total solid angle in the N -dimensional space.
After integration of the N − 1 angular variables, one is left with

Seff [f1] =
∫ +∞

0

dq f1(q)
[
ln

(
f1(q)

σ(N)qN−1

)
+ µ + βX(q)

]
, (11)
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where σ(N) =
∫

dΩ = 2πN/ 2/ Γ(N/ 2) represents the surface of a hypersphere in
N dimensions [22] with unit radius and we have expressed the probability den-
sity fN (q1, . . . , qN ) = fN (q) in the N -dimensional space in terms of the reduced
probability density f1(q) for the variable q,

f1(q) ≡
∫

dΩ fN (q) = σ(N) qN−1fN (q) .

Finally, moving from q to the energy variable x = X(q2) = q2/ 2, the corresponding
probability density is

f(x) =
dq(x)
dx

f1(q)
∣∣∣∣
q=q(x)

=
f1(q)|q=q(x)√

2x
,

where q(x) is obtained by inverting eq. (9). In terms of the new variable x and
distribution f(x), the effective functional (11) becomes

Seff [f ] =
∫ +∞

0

dx f(x)
[
ln

(
f(x)

σ(N)xN/ 2−1

)
+ µ + βx

]
. (12)

Variation of this functional, δSeff [f ]/δf(x) = 0, leads to the equilibrium gamma-
distribution (5) with dimensionless variable ξ = βx and index n = N/ 2. As a simple
example of application of this formula, one can obtain the Maxwell–Boltzmann
probability density in three dimensions f3(K) for the kinetic energy K letting N =
3. In turn this suggests the interpretation of the parameter N(λ) of wealth-exchange
models as an effective dimension of the system and of the Lagrange multiplier β−1

as the effective temperature, as it is in fact consistently recovered according to the
equipartition theorem,

β−1 ≡ T =
2〈x〉
N

. (13)

4. Mechanical analogy from collisions in N dimensions

The deep analogy between kinetic wealth-exchange models of closed economy sys-
tems, where agents exchange wealth at each trade, and kinetic gas models, where
particles exchange energy at each collision, can be further investigated and justified
by studying the microscopic dynamics of interacting particles. In this section we
make this analogy more formal than in ref. [11].

In one dimension, particles undergo head-on collisions, in which they can ex-
change the total amount of energy they have, i.e. a fraction ω = 1 of it. Alterna-
tively, one can say that the minimum fraction of energy that a particle saves in a
collision is in this case λ ≡ 1− ω = 0. In the framework of wealth-exchange mod-
els, this case corresponds to the model of Dragulescu and Yakovenko mentioned
above [13], in which the total wealth of the two agents is reshuffled during a trade.

In an arbitrary (larger) number of dimensions, however, this does not take place,
unless the two particles are travelling exactly along the same line in opposite verses.
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On average, only a fraction ω = (1−λ) < 1 of the total energy will be lost or gained
by a particle during a collision, that is most of the collisions will be practically
characterized by an energy saving parameter λ > 0. This corresponds to the model
of Chakraborti and Chakrabarti [10], in which there is a fixed maximum fraction
(1− λ) > 0 of wealth which can be reshuffled.

Consider a collision between two particles in an N -dimensional space, with
initial velocities represented by the vectors v(1) = (v(1)1, . . . , v(1)N ) and v(2) =
(v(2)1, . . . , v(2)N ). For the sake of simplicity, the masses of the two particles are
assumed to be equal to each other and will be set equal to 1, so that momentum
conservation implies that

v′(1) = v(1) + ∆v ,

v′(2) = v(2) −∆v , (14)

where v′(1) and v′(2) are the velocities after the collisions and ∆v is the momentum
transferred. Conservation of energy implies that v′ 2(1) +v′ 2(2) = v2

(1) +v2
(2) which, by

using eq. (14), leads to

∆v2 + (v(1) − v(2)) ·∆v = 0 . (15)

Introducing the cosines ri of the angles αi between the momentum transferred ∆v
and the initial velocity v(i) of the ith particle (i = 1, 2),

ri = cos αi =
v(i) ·∆v
v(i) ∆v

, (16)

where v(i) = |v(i)| and ∆v = |∆v|, and using eq. (15), one obtains that the modulus
of momentum transferred is

∆v = −r1v(1) + r2v(2) . (17)

From this expression one can now compute explicitly the differences in particle
energies xi due to a collision, that are the quantities x′i−xi ≡ (v′ 2(i)−v2

(i))/ 2. With
the help of the relation (15) one obtains

x′1 = x1 + r2
2 x2 − r2

1 x1 ,

x′2 = x2 − r2
2 x2 + r2

1 x1 . (18)

Comparison with eqs (3) for the kinetic model of Dragulescu and Yakovenko clearly
shows their equivalence – consider also that here the ri’s are in the interval (0, 1)
and, furthermore, they can be considered as random variables, if a hypothesis of
molecular chaos is made concerning the random initial directions of the two particles
entering the collision.

However, the ri’s are not uniformly distributed and their most probable value
drastically depends on the space dimension: the greater the dimension N , the more
unlikely it becomes that the corresponding values 〈ri〉 assume values close to 1
and the more probable that instead they assume a small value close to 1/N . This
can be seen by computing their average – over the incoming directions of the two
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particles or, equivalently, on the orientation of the initial velocity v(i) of one of
the two particles and of the momentum transferred ∆v. In N dimensions, the
Cartesian components of a generic velocity vector v = (v1, v2, . . . , vN ) are related
to the corresponding hyperspherical coordinates – the velocity modulus v and the
(N − 1) angular variables χj – through the following relations:

v1 = v cos χ1,

v2 = v sin χ1 cosχ2,

. . .

vN = v sin χ1 sin χ2 . . . cosχN . (19)

Using these transformations to express the initial velocity v(1) of the first particle
and the momentum transferred ∆v in terms of their respective moduli v(1) and ∆v
and angular variables {φi} and {θi}, the expression (16) for the cosine r1 becomes

r1 = cos α1 =cos φ1 cos θ1

=[sin φ1 cosφ2][sin θ1 cos θ2]
+ . . .

=[sin φ1 sin φ2 . . . cosφN ][sin θ1 sin θ2 . . . cos θN ]. (20)

The average of the square cosine r2
1 is performed by first taking the square of (20),

integrating over the angular variables, considering that the N -dimensional volume
element is given by

dNv = vN−1dv

N−1∏

j=1

[sin χj ]j−1dχj ,

and finally by dividing by the total solid angle. In the integration only the squared
terms survive, obtained from the square of (20), since all the cross-terms are
zero after integration – they contain at least one integral of a term of the form
sin χ cosχ = sin(2χ)/ 2 which averages to zero. By direct integration over the angle
φi and θi, it can be shown that in N dimensions

〈r2
1〉 = 〈cos2 α1〉 =

1
N

.

This means that the center of mass of the distribution for r1, considered as a
random variable due to the random initial directions of the two particles, shifts
toward smaller and smaller values as N increases. The 1/N dependence of 〈r2

1〉 can
be compared with the wealth-exchange model with λ > 0. There a similar relation
is found between the average value of the corresponding coefficients ε(1 − λ) or
ε̄(1 − λ) in the evolution equations (4) for the wealth exchange and the effective
dimensions N(λ): since ε is a uniform random number in (0, 1), then 〈ε〉 = 1/ 2 and
from eq. (6) one finds 〈ε(1− λ)〉 = (1− λ)/ 2 = 6/(N + 4).

5. Conclusion

The appearance of wealth inequalities in the minimal models and examples of
closed economy systems considered above appears to reflect a general statistical
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mechanism taking place for a wide class of stochastic exchange law – besides closed
economy models – in which the state of the M units {i} is characterized by the
values {xi} of a certain quantity x (e.g. wealth or energy) exchanged when units in-
teract with each other. The mechanism involved seems to be quite general and leads
to equilibrium distributions f(x) with a broad shape. In the special but important
case of systems with a homogeneous quadratic Hamiltonian – or equivalently with
evolution laws linear in the quantities xi – and N (effective) degrees of freedom, the
canonical equilibrium distribution is a gamma-distribution γn(x) of order n = N/2.
The corresponding distribution for the closed economy model with a fixed saving
propensity λ has the special property that it becomes a fair (Dirac-δ) distribution
when λ → 1 or N(λ) → ∞. The possibility for single units to exchange only a
fraction of their wealth during a trade – corresponding from a technical point of
view to a wealth dynamics in a space with larger effective dimensions N – seems
to be the key element which makes the wealth distribution less inequal.
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[4] R Gibrat, Les Inégalités Economiques (Sirey, 1931)
[5] J Angle, The surplus theory of social stratification and the size distribution of personal

wealth, in: Proceedings of the American Social Statistical Association, Social Statistics
Section, Alexandria, VA, 1983, p. 395.

[6] J Angle, Social Forces 65, 293 (1986), http://www.jstor.org
[7] E Bennati, La simulazione statistica nell’analisi della distribuzione del reddito: mod-

elli realistici e metodo di Monte Carlo (ETS Editrice, Pisa, 1988)
[8] E Bennati, Rivista Internazionale di Scienze Economiche e Commerciali 35, 735

(1988)
[9] E Bennati, Il metodo Monte Carlo nell’analisi economica, Rassegna di lavori dell’ISCO

X (1993) 31
[10] A Chakraborti and B K Chakrabarti, Eur. Phys. J. B17, 167 (2000)
[11] M Patriarca, A Chakraborti and K Kaski, Phys. Rev. E70, 016104 (2004)
[12] M Patriarca, A Chakraborti and K Kaski, Physica A340, 334 (2004)
[13] A Dragulescu and V M Yakovenko, Eur. Phys. J. B17, 723 (2000)
[14] J Angle, J. Math. Sociol. 18, 27 (1993)
[15] A Chakraborti, Int. J. Mod. Phys. C13, 1315 (2002)
[16] J Angle, J. Math. Sociol. 26, 217 (2002)
[17] P K Mohanty, Phys. Rev. E74(1), 011117 (2006)

P K Mohanty, private communication
[18] D Dhar and A Chakraborti, in preparation (2008)
[19] M Patriarca, A Chakraborti, K Kaski and G Germano, Kinetic theory models for

the distribution of wealth: Power law from overlap of exponentials, in: A Chatter-
jee, S Yarlagadda and B K Chakrabarti (eds), Econophysics of wealth distributions
(Springer, 2005) p. 93, arXiv.org: physics/0504153

242 Pramana – J. Phys., Vol. 71, No. 2, August 2008



Gamma-distribution and wealth inequality

[20] J Mimkes and G Willis, Lagrange principle of wealth distribution, in: A Chatter-
jee, S Yarlagadda and B K Chakrabarti (eds), Econophysics of wealth distributions
(Springer, 2005) p. 61

[21] J Mimkes and Y Aruka, Carnot process of wealth distribution, in: A Chatter-
jee, S Yarlagadda and B K Chakrabarti (eds), Econophysics of wealth distributions
(Springer, 2005) p. 70

[22] E W Weisstein, Hypersphere. From mathworld – A Wolfram web resource,
http://mathworld.wolfram.com/Hypersphere.html

Pramana – J. Phys., Vol. 71, No. 2, August 2008 243


