
IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 43 (2010) 482001 (9pp) doi:10.1088/1751-8113/43/48/482001

FAST TRACK COMMUNICATION

Quantum entanglement: the unitary 8-vertex braid
matrix with imaginary rapidity

Amitabha Chakrabarti1, Anirban Chakraborti2 and Aymen Jedidi2
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Abstract
We study quantum entanglements induced on product states by the action
of 8-vertex braid matrices, rendered unitary with purely imaginary spectral
parameters (rapidity). The unitarity is displayed via the ‘canonical
factorization’ of the coefficients of the projectors spanning the basis. This
adds one more new facet to the famous and fascinating features of the 8-
vertex model. The double periodicity and the analytic properties of the elliptic
functions involved lead to a rich structure of the 3-tangle quantifying the
entanglement. We thus explore the complex relationship between topological
and quantum entanglement.

PACS numbers: 03.65.Ud, 03.67.−a, 03.67.Mn, 03.65.Ca

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Are topological and quantum entanglements related? This intriguing question is recently
being studied from different angles. One approach was initiated by Aravind [1]. Kauffman
and Lomonaco [2] pointed out that braid matrices (representing the third Reidemeister move
[3], fundamental in the topological study of knots and links) correspond to universal quantum
gates, when they are also unitary. In joining the two ends of three separate strings to form
three loops which have undergone two Reidemeister moves (type 3), one obtains a Borromean
ring in which the strings are now topologically entangled and can no longer be separated
(see [2] for a discussion and diagramatic illustration). Braid equations also embody matrix
representations of the type-3 Reidemeister move. If unitary (but ‘non-local’) transformations
induced on pure product states in a base space generate quantum entanglements of such states,
one obtains an intriguing link between topological and quantum entanglements. In previous
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studies, unitary braid matrices were constructed explicitly for all dimensions [4] and applied
to the study of quantum entanglements [5]. Here, our starting point is the remarkable 8-vertex
model [6] with braid matrix related to the Yang–Baxter one through a suitable permutation
of elements, rendered unitary by a passage to imaginary rapidity (θ → iθ ). The consequent
unitarity is displayed transparently through ‘canonical factorization’ [7] of the coefficients
of the projectors. One now no longer has a statistical model with real, positive Boltzmann
weights, but unitarity thus implemented opens a new road (as will be shown below) to
quantum entanglements. We first formulate such unitarization (θ → iθ ) in a general fashion
and illustrate with the relatively simple 6-vertex case. Then we concentrate on the far more
complex 8-vertex case, and study the 3-tangle [8] parametrized by sums of products of ratios
of the q-Pochhammer functions.

2. Theory and results

2.1. Unitarity for imaginary rapidity

The R̂(θ) being an N2×N2 matrix acts on the base space VN⊗VN spanned by the tensor product
of N-dimensional vectors VN . Defining R̂12(θ) = R̂(θ) ⊗ IN , R̂23(θ) = IN ⊗ R̂(θ),where IN

is the N × N identity matrix, the corresponding braid operator is

B̂ ≡ R̂12(θ)R̂23(θ + θ ′)R̂12(θ
′)

= R̂23(θ
′)R̂12(θ + θ ′)R̂23(θ). (1)

The above Braid equation corresponds to the equivalence of knots related through the third
Reidemeister move [3]. A useful introduction to the equivalent Yang–Baxter formalism is
provided in [9]. Of course, B̂ acts on the base space VN ⊗ VN ⊗ VN . Additionally, if the
braid matrix R̂ is also unitary, then it induces unitary transformations in VN ⊗ VN , and B̂ in
VN ⊗ VN ⊗ VN . It is crucial to note the essential point that a non-trivial unitary R̂ induces
non-local unitary transformations. Had it been the case that R̂ = R̂1 ⊗ R̂2, where R̂1 is acting
on V1, R̂2 on V2 and R̂ on V1 ⊗ V2, then such an R̂ would have been trivial from the point of
braiding. Thus, a non-trivial B̂ induces a non-local transformation in VN ⊗ VN ⊗ VN .

The non-local unitary actions set the stage for quantum entanglements. It was shown [5]
that B̂, acting on unentangled product states of the general form

|i〉 ⊗ |j 〉 ⊗ |k〉 ≡
( N∑

i=1

xi |ai〉
)

⊗
( N∑

i=1

yi |bi〉
)

⊗
( N∑

i=1

zi |ci〉
)

in VN ⊗ VN ⊗ VN , can generate entanglements for certain choices. We also studied
entanglements generated by two different classes (real and complex) of B̂. The ‘3-tangles’
and ‘2-tangles’ characterizing such entanglements were obtained explicitly in parametrized
forms in terms of the parameters of B̂, and the variations with (θ, θ ′) were analyzed.

In another paper [7], we introduced the ‘canonical factorization’ for R̂(θ), which turns
out to be very significant. The whole development is not necessary here, and so we summarize
below only the essential steps of that formalism. We show that the simple passage (θ → iθ)

is sufficient to provide unitarity under the following constraints:

(i) R̂(θ) = ∑
i

fi(θ)

fi(−θ)
Pi, where PiPj = δijPi and

∑
i Pi = IN2(= IN ⊗ IN);

(ii) (R̂(θ))trans = R̂(θ).

Thus, initially R̂(θ) is real and symmetric, with a complete set of orthonormal projectors
Pi as a basis. The domain of i depends on the class considered. The factorized form
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fi(θ)/fi(−θ) of the coefficients in the first constraint might seem strongly restrictive, but in
fact it was shown that it holds true for all well-known standard cases, and new such cases were
constructed [7], with the new term ‘canonical factorization’ being introduced. One can easily
check that a direct consequence of the constraints is R̂(θ)R̂(−θ) = I ⊗ I. After the passage
(θ → iθ), since Pj ’s are real, one can easily show that (R̂(iθ))†(R̂(iθ)) = I ⊗ I , i.e. R̂(iθ) is
unitary.

2.2. 6-vertex model

First, we demonstrate this formalism with the simpler case of the 6-vertex models. Following
[7], which contains an extensive classification of ‘canonical factorization’ for all dimensions,
we define the projectors

P1(±) = 1

2

∣∣∣∣∣∣∣∣
1 0 0 ±1
0 0 0 0
0 0 0 0

±1 0 0 1

∣∣∣∣∣∣∣∣ , P2(±) = 1

2

∣∣∣∣∣∣∣∣
0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0

∣∣∣∣∣∣∣∣ (2)

and obtain for the ferroelectric case after (θ → iθ), with the real parameter γ ,

R̂(iθ) = P1(+) + P1(−) +
cosh 1

2 (γ − iθ)

cosh 1
2 (γ + iθ)

P2(+) +
sinh 1

2 (γ − iθ)

sinh 1
2 (γ + iθ)

P2(−), (3)

which evidently satisfies the unitarity constraint.

2.3. 8-vertex model

Now we proceed to the more complicated case of the 8-vertex model. We again define the
projectors as in equation (2). The coefficients are expressed [10] in terms of infinite products
(q-Pochhammer functions), starting with

(x; a)∞ =
∏
n�0

(1 − xan). (4)

Setting z = exp(θ), the initial 8-vertex matrix is

R̂(θ) = (a + d)P1(+) + (a − d)P1(−) + (c + b)P2(+) + (c − b)P2(−), (5)

where with supplementary real parameters p, q one obtains [7]

(a ± d) =
( ∓ p

1
2 q−1z;p

)
∞

( ∓ p
1
2 qz−1;p

)
∞( ∓ p

1
2 q−1z−1;p

)
∞

( ∓ p
1
2 qz;p

)
∞

(6)

(c ± b) =
(
q

1
2 z− 1

2 ± q− 1
2 z

1
2
)(

q
1
2 z

1
2 ± q− 1

2 z− 1
2
) (∓pq−1z;p)∞(∓pqz−1;p)∞
(∓pq−1z−1;p)∞(∓pqz;p)∞

. (7)

We note that defining the numerators of the two equations ((6) and (7)) as f1(±)(z) and f2(±)(z),

respectively, and using the fact that z = exp(θ), we can express them as (a ± d) = f1(±)(z)

f1(±)(z−1)

and (c±b) = f2(±)(z)

f2(±)(z−1)
, which implies that the essential property of the coefficients, ‘canonical

factorization’, is preserved.

After (θ → iθ) passage, we thus have (a ± d) = f1(±)(eiθ )

f1(±)(e−iθ )
, and (c ± b) = f2(±)(eiθ )

f2(±)(e−iθ )
.

Since the other parameters are real, we can interpret the coefficients as new phases
(a ± d) = ei�(±) and (c ± b) = ei�(±) , where the phase factors (�(±), �(±)) are complicated
functions of (p, q, θ). Note also that the coefficients under complex conjugation become
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(a ± d)∗ = f1(±)(e−iθ )

f1(±)(eiθ )
= (a ± d)−1 and (c ± b)∗ = f2(±)(e−iθ )

f2(±)(eiθ )
= (c ± b)−1. Since the projectors

are real and symmetric, we again have the unitarity (R̂(iθ))†R̂(iθ)) = I ⊗ I . This opens the
door of a new domain as a generator of quantum entanglements, as shown hereafter.

2.3.1. Action of the braid operator on the base space. Consider the base space that is eight
dimensional and spanned by the states |ε1〉⊗|ε2〉⊗|ε3〉 ≡ |ε1ε2ε3〉, where εi = ±, i = 1, 2, 3.

We will adopt a notation (|+〉, |−〉) → (|1〉, |1̄〉) that generalizes smoothly to higher spins.
The braid operator is

B̂ = B̂† = (R̂(iθ) ⊗ I2)(I2 ⊗ R̂(iθ + iθ ′))(R̂(iθ ′) ⊗ I2), (8)

and the matrix

R̂(iθ) =

∣∣∣∣∣∣∣∣
a 0 0 d

0 c b 0
0 b c 0
d 0 0 a

∣∣∣∣∣∣∣∣ , (9)

where (a ± d) = ei�(±)(θ), (c ± b) = ei�(±)(θ) and

ei�(±)(θ) =

(
∓p

1
2 q−1eiθ ;p

)
∞

(
∓p

1
2 qe−iθ ;p

)
∞(

∓p
1
2 q−1e−iθ ;p

)
∞

(
∓p

1
2 qeiθ ;p

)
∞

ei�(±)(θ) = q
1
2 e−i θ

2 ± q− 1
2 ei θ

2

q
1
2 ei θ

2 ± q− 1
2 e−i θ

2

×
(∓pq−1eiθ ;p

)
∞

(∓pqe−iθ ;p
)
∞(∓pq−1e−iθ ;p

)
∞

(∓pqeiθ ;p
)
∞

.

(10)

One crucial fact is that R̂ has non-zero elements only on the diagonal and the anti-diagonal.
This effectively splits the base space into two four-dimensional subspaces closed under
the action of B̂. They are spanned respectively by V(e) ≡ (|111〉, |11̄1̄〉, |1̄11̄〉, |1̄1̄1〉) and
V(o) ≡ (|1̄1̄1̄〉, |1̄11〉|11̄1〉, |111̄〉), corresponding to even and odd numbers of indices with
bars. Moreover, for say

B̂|111〉 = α1|111〉 + β1|11̄1̄〉 + γ1|1̄11̄〉 + δ1|1̄1̄1〉, (11)

one has

B̂|1̄1̄1̄〉 = α1|1̄1̄1̄〉 + β1|1̄11〉 + γ1|11̄1〉 + δ1|111̄〉, (12)

with the same coefficients (α1, β1, γ1, δ1). More generally, the symmetry of (9) ensures for

B̂|ijk〉 = c1|ijk〉 + c2|ij̄ k̄〉 + c3|īj k̄〉 + c4|ī j̄ k〉 (13)

with i, j, k = (1 or 1̄), the direct consequence

B̂|ī j̄ k̄〉 = c1|ī j̄ k̄〉 + c2|ījk〉 + c3|ij̄ k〉 + c4|ij k̄〉. (14)

The coefficients are conserved as above for (i, j, k) → (ī, j̄ , k̄). Thus, it is sufficient to
evaluate the action of B̂ on the subspace V(e) or V(o).

2.3.2. Density matrices and 3-tangles. To study the behavior of density matrices and 3-
tangles, we explicitly consider the action of B̂ on the product state |1〉 ⊗ |1〉 ⊗ |1〉 ≡ |111〉, in
the subspace V(e), given by (11). Some straightforward algebra gives

α1 = f(+)f
′
(+)f

′′
(+) + f(−)f

′
(−)g

′′
(+)

β1 = g(+)f
′
(+)f

′′
(−) + g(−)f

′
(−)g

′′
(−)

γ1 = g(−)f
′
(+)f

′′
(−) + g(+)f

′
(−)g

′′
(−)

δ1 = f(−)f
′
(+)f

′′
(+) + f(+)f

′
(−)g

′′
(+),

(15)

4
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where we have used the phase factors �(±) and �(±) to define

f(±) = ei�(+)(θ) ± ei�(−)(θ)

2

f ′
(±) = ei�(+)(θ

′) ± ei�(−)(θ
′)

2

f ′′
(±) = ei�(+)(θ+θ ′) ± ei�(−)(θ+θ ′)

2

g(±) = ei�(+)(θ) ± ei�(−)(θ)

2

g′
(±) = ei�(+)(θ

′) ± ei�(−)(θ
′)

2

g′′
(±) = ei�(+)(θ+θ ′) ± ei�(−)(θ+θ ′)

2
,

(16)

such that (f, f ′, f ′′)(±) correspond respectively to arguments (θ, θ ′, (θ + θ ′)) with analogous
notations for (g, g′, g′′)(±). Starting with (11) and tracing out the third index, one obtains the
density matrix

ρ12 =

∣∣∣∣∣∣∣∣
α1α

∗
1 0 0 α1δ

∗
1

0 β1β
∗
1 β1γ

∗
1 0

0 β∗
1 γ ∗

1 γ1γ
∗
1 0

α∗
1δ1 0 0 δ1δ

∗
1

∣∣∣∣∣∣∣∣ . (17)

Defining

ρ̃12 =
∣∣∣∣0 −i
i 0

∣∣∣∣ ⊗
∣∣∣∣0 −i
i 0

∣∣∣∣ ρ∗
12 ⊗

∣∣∣∣0 −i
i 0

∣∣∣∣ ⊗
∣∣∣∣0 −i
i 0

∣∣∣∣ , (18)

one then obtains the matrix

ρ12ρ̃12 = 2

∣∣∣∣∣∣∣∣
α1α

∗
1δ1δ

∗
1 0 0 α2

1α
∗
1δ

∗
1

0 β1β
∗
1 γ1γ

∗
1 β2

1β∗
1 γ ∗

1 0
0 γ 2

1 β∗
1 γ ∗

1 β1β
∗
1 γ1γ

∗
1 0

δ2
1α

∗
1δ

∗
1 0 0 α1α

∗
1δ1δ

∗
1

∣∣∣∣∣∣∣∣ . (19)

The matrix (ρ12ρ̃12) has the following eigenstates:∣∣∣∣∣∣∣∣
α1
δ1

0
0
1

〉
,

∣∣∣∣∣∣∣∣
α1
δ1

0
0

−1

〉
,

∣∣∣∣∣∣∣∣∣
0
β1

γ1

1
0

〉
,

∣∣∣∣∣∣∣∣∣
0
β1

γ1

−1
0

〉
(20)

with the eigenvalues 4α1α
∗
1δ1δ

∗
1 , 0, 4β1β

∗
1 γ1γ

∗
1 , 0, respectively. Implementing the results of

[8] (as in [5]), the 3-tangle is obtained as

τ123 = 16(α1α
∗
1β1β

∗
1 γ1γ

∗
1 δ1δ

∗
1)

1
2 , (21)

noting that τ123 = 4(product of non-zero roots)
1
2 , and using (20) to get the only two non-

zero roots: 4α1α
∗
1δ1δ

∗
1 and 4β1β

∗
1 γ1γ

∗
1 . The 3-tangle is invariant under permutations of the

subsystems (1, 2, 3).
Due to the unitarity of B̂ (after θ → iθ ) in (11) α1α

∗
1 + β1β

∗
1 + γ1γ

∗
1 + δ1δ

∗
1 = 1

and 0 � τ123 � 1. As the parameters (p, q, θ, θ ′) vary, the 3-tangle τ123 varies in the
domain [0, 1]. The doubly periodic elliptic functions involved, expressed in terms of the

5
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Figure 1. Variations of the 3-tangle τ123 as a function of (θ, θ ′), by the action of B̂, on the
product states |111〉, |11̄1̄〉, |1̄11̄〉, |1̄1̄1〉 in the subspace V(e) given by (11). The parameters
p = 0.1, q = 0.5.

q-Pochhammer functions as in ratios (10), demand painstaking computations requiring rather
involved algebra.

One can study entirely analogously B̂(|11̄1̄〉, |1̄11̄〉, |1̄1̄1〉) in the subspace V(e)

implementing respectively the sets of coefficients (αi, βi, γi, δi), i = 2, 3, 4, as given by

α2 = f(+)g
′
(+)f

′′
(−) + f(−)g

′
(−)g

′′
(−),

β2 = g(+)g
′
(+)f

′′
(+) + g(−)g

′
(−)g

′′
(+),

γ2 = g(−)g
′
(+)f

′′
(+) + g(+)g

′
(−)g

′′
(+),

δ2 = f(−)g
′
(+)f

′′
(−) + f(+)g

′
(−)g

′′
(−),

α3 = f(−)g
′
(+)g

′′
(−) + f(+)g

′
(−)f

′′
(−),

β3 = g(−)g
′
(+)g

′′
(+) + g(+)g

′
(−)f

′′
(+),

γ3 = g(+)g
′
(+)g

′′
(+) + g(−)g

′
(−)f

′′
(+),

δ3 = f(+)g
′
(+)g

′′
(−) + f(−)g

′
(−)f

′′
(−),

α4 = f(−)f
′
(+)g

′′
(+) + f(+)f

′
(−)f

′′
(+),

β4 = g(−)f
′
(+)g

′′
(−) + g(+)f

′
(−)f

′′
(−),

γ4 = g(+)f
′
(+)g

′′
(−) + g(−)f

′
(−)f

′′
(−),

δ4 = f(+)f
′
(+)g

′′
(+) + f(−)f

′
(−)f

′′
(+).

(22)

Figure 1 shows the rich structure with subtle variations for τ123 by the action of B̂ on the
product states |111〉, |11̄1̄〉, |1̄11̄〉, |1̄1̄1〉 in the subspace V(e). This rich structure is indeed the

6
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Figure 2. Variations (cross-sectional and top views) of the 3-tangle τ123 as a function of (p, q) for
(θ = π/3, θ ′ = π/6), by the action of B̂ on the product state |111〉.

real attraction of the unitarized 8-vertex case. We note that for (θ + θ ′) = 0, we have τ123 = 0,
so that in the domain (−π, π) for both (θ, θ ′), there are diagonal lines of symmetry, with a
line of zero value passing through the origin. One further notes that (�,�)± → (�,�)±
and hence (τ123 → τ123) for p → 1/p (and also with q → 1/q, θ → −θ ). There are more
intricate and subtle lines of symmetry as evident in figure 2, where we show the oscillations
of τ123 between zero and unity, as a function of (p, q) for B̂|111〉. The results for the other
subspace V(o), namely B̂(|1̄1̄1̄〉, |1̄11〉|11̄1〉, |111̄〉), follows from the symmetry of V(e) and
V(o) under the action of B̂ as stated in (13) and (14). Combining these results one can then
study the action of B̂ on the general product state, namely

B̂{(x1|1〉 + x1̄|1̄〉) ⊗ (y1|1〉 + y1̄|1̄〉) ⊗ (z1|1〉 + z1̄|1̄〉)}, (23)

with some more straightforward algebra.
If we write

B̂{(x1|1〉 + x1̄|1̄〉) ⊗ (y1|1〉 + y1̄|1̄〉) ⊗ (z1|1〉 + z1̄|1̄〉)}
= c111|111〉 + c11̄1̄|11̄1̄〉 + c1̄11̄|1̄11̄〉 + c1̄1̄1|1̄1̄1〉

+ c1̄1̄1̄|1̄1̄1̄〉 + c1̄11|1̄11〉 + c11̄1|11̄1〉 + c111̄|111̄〉 (24)

and use the definitions from equation (15), equation (16) and equation (22), then we have for
example

c111 = (x1y1z1)α1 + (x1y1̄z1̄)α2 + (x1̄y1z1̄)α3 + (x1̄y1̄z1)α4. (25)

7
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Similarly, (c11̄1̄, c1̄11̄, c1̄1̄1) are obtained respectively by substituting (α1, α2, α3, α4) in c111,
the coefficients (β1, β2, β3, β4), (γ1, γ2, γ3, γ4) and (δ1, δ2, δ3, δ4). Next

(c111, c11̄1̄, c1̄11̄, c1̄1̄1) � (c1̄1̄1̄, c1̄11, c11̄1, c111̄)

can be shown to correspond to

(x1y1z1) � (x1̄y1̄z1̄).

Thus, one has eight coefficients (cijk) involving

(i) six complex parameters (with one constraint for the overall normalization), and
(ii) four real parameters (p, q, θ, θ ′), as indicated in equation (10) and equation (16).

Thus, there are (2.6−1+4)=15 parameters. Varying all these parameters suitably, one can
obtain amongst others, some special (well-known) states. Thus, for

c111 = ±c1̄1̄1̄ = 1√
2

(26)

and the other six c’s vanishing, one obtains the |GHZ〉 states.
Again, for example, for

c11̄1̄ = c1̄11̄ = c1̄1̄1 = 1√
3

(27)

and the other c’s vanishing, or for

c1̄11 = c11̄1 = c111̄ = 1√
3

(28)

and the other c’s vanishing, one obtains the |W〉 states.
Obtaining explicitly the points in the multi-dimensional parameter space corresponding

to specific states is beyond the scope of this communication.

3. Conclusions and outlook

In summary, we have studied quantum entanglements induced on product states by the action of
8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity).
First, the unitarity was displayed via the ‘canonical factorization’ of the coefficients of the
projectors spanning the basis for the simpler 6-vertex model, as well as the more complex
8-vertex model. For the 8-vertex model, we have further analyzed and computed the action
of the braid matrix B̂, on basic pure product states to see whether there is indeed quantum
entanglement after unitarization. We found a conclusive answer: quantum entanglement was
indeed generated. This adds one more new facet to the famous and fascinating features of the
8-vertex model. Using the density matrix, we then extracted the 3-tangle explicitly for this
complex situation and obtained a measure of the 3-particle correlation. The double periodicity
and analytic properties of the elliptic functions involved led to a rich structure of the 3-tangle,
quantifying the entanglement. We thus explored the complex relationship between topological
and quantum entanglement.

We list the essential features of our study, along with an outlook as follows.

(i) Some authors [11] had studied how local unitary transformations, conserving the
entanglement measures (2-tangles and 3-tangles), can be implemented to classify
entangled states as unitary transforms of standard ones, such as |GHZ〉 and |W〉. Here we
showed that non-local unitary action of unitary braid operators can lead to unified views
of all 3-particle entanglements situating them in the domains of the variable parameters
corresponding to the class of the braid operator implemented. Thus, the study here
provides a broader and deeper understanding of the entanglement landscape. We intend
to study further such aspects thoroughly elsewhere.
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(ii) In [5], two classes of unitary braid operators were implemented to generate parametrized
3-tangles. As emphasized in the title, our goal was to bridge two fascinating domains
of profound significance—namely topological and quantum entanglements. In this
communication, we turned to the celebrated 8-vertex model. The fascinating aspects
of the statistical models with phase transitions (for the real braid matrix) are well known.
Here, we unitarized it via the simple passage to imaginary rapidity (θ → iθ ). This
displayed the novel possibility of the complex 8-vertex braid operator. It led to the study
of the 3-tangles [8] parametrized by sums of products of ratios of the q-Pochhammer
functions. The figures provided some snapshots of the rich landscape. This certainly
needs further detailed explorations.

(iii) The role of our ‘canonical factorization’ [7] in displaying passage to unitarity under
θ → iθ has already been stressed and illustrated. Such unitarization has broader prospects.
Different classes (not only, say, 6-vertex or 8-vertex) of braid operators can provide the
starting points. We intend to explore, from this point of view, a new class of braid
operators in a future article. Remarkable and surprising properties of the new class of
braid matrices (SÔ(N) and Sp̂(N)) have been pointed out [12]. We will show elsewhere
how they lead to Temperley–Lieb algebra, spin-chains and quantum entanglements. The
techniques introduced here will lead to broader possibilities.
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