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Abstract. If one places N cities randomly on a lattice of size L, we find that l̄E
√
p and l̄M

√
p vary with

the city concentration p = N/L2, where l̄E is the average optimal travel distance per city in the Euclidean
metric and l̄M is the same in the Manhattan metric. We have studied such optimum tours for visiting all
the cities using a branch and bound algorithm, giving the exact optimized tours for small system sizes
(N ≤ 100) and near-optimal tours for bigger system sizes (100 < N ≤ 256). Extrapolating the results for
N →∞, we find that l̄E

√
p = l̄M

√
p = 1 for p = 1, and l̄E

√
p = 0.73 ± 0.01 and l̄M

√
p = 0.93 ± 0.02 with

l̄M/l̄E ' 4/π as p → 0. Although the problem is trivial for p = 1, for p → 0 it certainly reduces to the
standard travelling salesman problem on continuum which is NP-hard. We did not observe any irregular
behaviour at any intermediate point. The crossover from the triviality to the NP-hard problem presumably
occurs at p = 1.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)

1 Introduction

The travelling salesman problem (TSP) is a simple exam-
ple of a multivariable combinatorial optimization prob-
lem and perhaps the most famous one. Given a certain
set of cities and the intercity distance metric, a trav-
elling salesman must find the shortest tour in which
he visits all the cities and comes back to his starting
point. It is a non-deterministic polynomial complete (NP-
complete) problem [1–3]. In the standard formulation of
TSP, we have N number of cities distributed randomly
on a continuum plane and we determine the average op-
timal travel distance per city l̄E in the Euclidean metric
(with ∆rE =

√
∆x2 +∆y2), or l̄M in the Manhattan met-

ric (with ∆rM = |∆x|+ |∆y|). Since the average distance
per city scales (for fixed area) with the number of cities N
as 1/

√
N , we find that the normalized travel distance per

city ΩE = l̄E
√
N or ΩM = l̄M

√
N become the optimized

constants and their values depend on the method used to
optimize the travel distance. Extending the analytic esti-
mates of the average nearest neighbour distances, in par-
ticular within a strip and varying the width of the strip to
extremize (single parameter optimization approximation),
one gets 5

8 < ΩE < 0.92 [4] and 5
2π < ΩM < 1.17 [5]. Care-

ful (scaling, etc.) analysis of the numerical results obtained
so far indicates that ΩE ' 0.72 [6].

Similar to many of the statistical physics problems re-
defined on the lattices, e.g., the statistics of self-avoiding
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walks on lattices (for investigating the linear polymer
conformational statistics), the TSP can also be defined on
randomly dilute lattices. The (percolation) cluster statis-
tics of such dilute lattices is now extensively studied [7].
The salesman’s optimized path on a dilute lattice is neces-
sarily a self-avoiding one; for optimized tour the salesman
cannot afford to visit any city more than once and ob-
viously it is one where the path is non-intersecting. The
statistics of self-avoiding walks on dilute lattices has also
been studied quite a bit (see e.g. [8]). However, this knowl-
edge is not sufficient to understand the TSP on similar
lattices. The TSP on dilute lattices is a very intriguing
one, but has not been studied intensively so far.

The lattice version of the TSP was first studied by
Chakrabarti [9]. In the lattice version of the TSP, the N
cities are represented by randomly occupied lattice sites
of a two-dimensional square lattice (L × L), the frac-
tion of sites occupied being p (= N/L2, the lattice oc-
cupation concentration). One must then find the short-
est tour in which the salesman visits each city only once
and comes back to its starting point. The average opti-
mal travel distance in the Euclidean metric l̄E, and in
the Manhattan metric l̄M, are functions of the lattice oc-
cupation concentration p [10]. We intend to study here
the variation of the normalised travel distance per city,
ΩE = l̄E

√
p and ΩM = l̄M

√
p, with the lattice concen-

tration p for different system sizes. It is obvious that at
p = 1, all the self-avoiding walks passing through all the
occupied sites will satisfy the requirements of TSP and
ΩE = 1 = ΩM (the distance between the neighbouring
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cities is equal to the unit lattice constant and the path be-
tween neighbouring sites makes discrete angles of of π/2
or its multiples with the Cartesian axes). The problem be-
comes nontrivial as p decreases from unity: isolated occu-
pied cities and branching configurations of occupied cities
are found here with finite probabilities and self-avoiding
walks through all the occupied cities, and only through
the occupied cities, become impossible. As p decreases
from unity, the discreteness of the distance of the path
connecting the two cities and of the angle which the path
makes with the Cartesian axes, tend to disappear. The
problem reduces to the standard TSP on the continuum
in the p → 0 limit when all the continuous sets of dis-
tances and angles become possible. We study here the
TSP on dilute lattice employing a computer algorithm
which gives the exact optimized tours for small system
sizes (N ≤ 100) and near-optimal tours for bigger system
sizes (100 < N ≤ 256). Our study indeed indicates that
ΩE and ΩM vary with p and ΩE ' 0.73 and ΩM ' 0.93
as p→ 0.

2 Computer simulation and results

We generate the randomly diluted lattice configurations
following the standard Monte Carlo procedure for differ-
ent system sizes. For each system size N , we vary the
lattice size L so that the lattice concentration p varies.
For each such lattice configuration, the optimum tour with
open boundary conditions, is obtained with the help of the
GNU tsp solve [11] developed using a branch and bound
algorithm (see Fig. 1). It claims to give exact results for
N ≤ 100 and near-optimal solutions for 100 < N ≤ 256.
It may be noted that the program works essentially with
the Euclidean distance. However there exists a geomet-
ric relationship between the Euclidean distance and the
Manhattan distance. We may write lE =

∑N
i=1 ri, and

lM =
∑N
i=1 riαi, where ri is the magnitude of the Eu-

clidean path vector between two neighbouring cities and
riαi = ri(| sin θi|+ | cos θi|) is the sum of the components
of the Euclidean path projected along the Cartesian axes.
Naturally, 1 ≤ αi ≤

√
2. If lE corresponds to the shortest

Euclidean path, then
∑N
i=1 r

′
i >

∑N
i=1 ri, for any other

path denoted by the primed set. If the optimized Eu-
clidean path does not correspond to the optimized Man-
hattan path, then one will have

∑N
i=1 r

′
iα
′
i <

∑N
i=1 riαi,

where all the αi and α′i satisfy the previous bounds. Ad-
ditionally, for random orientation of the Euclidean dis-
tance with respect to the Cartesian axes, 〈αi〉 = 〈α′i〉 =
(2/π)

∫ π/2
0 (sin θ+ cos θ)dθ = 4/π. It seems, with all these

constraints on α’s and α′’s, it would be impossible to sat-
isfy the above inequalities on

∑
ri, and

∑
riαi. In fact,

we checked for a set of 50 random optimized Euclidean
tours for small N (< 10), obtained using the algorithm,
whether the optimized Manhattan tours correspond to dif-
ferent sequence (of visiting the cities), and did not find
any. We believe that the optimized Euclidean tour neces-
sarily corresponds to the optimized Manhattan tour. We
then calculate lE and lM for each such optimized tour.
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Fig. 1. A typical TSP for (N =) 64 cities on a dilute lattice
of size L = 30. The cities are represented by black dots which
are randomly occupied sites of the lattice with concentration
p = N/L2 ' 0.07. The optimized Euclidean path is indicated.

At each lattice concentration p, we take about 100
lattice configurations (about 150 configurations at some
special points near p → 0) and then obtain the aver-
ages l̄E and l̄M. We then determine ΩE = l̄E

√
p and

ΩM = l̄M
√
p and study the variations of ΩE and ΩM,

and of the ratio ΩM/ΩE with p. We find that ΩE and
ΩM both have variations starting from the exact result
of unity for p = 1 to the respective constants in the
p → 0 limit. In fact we noted that although ΩM con-
tinuously decreases as p → 0, it remains close to unity
for all values of p. We studied the numerical results for
N = 64, 81, 100, 121, 144, 169, 196, 225 and 256. The
results for N = 64 and 100 have been shown in Figures 2
and 3 respectively. We have studied the variations in the
values ofΩE andΩM against 1/N for p→ 0, to extrapolate
its value in the N →∞ limit. It appears that for the large
N limit (see Fig. 4), ΩE(p → 0) and ΩM(p → 0) eventu-
ally extrapolate to 0.73±0.01 (as in continuum TSP) and
to 0.93± 0.02, respectively. This result for ΩE (at p→ 0)
compares very well with the previous estimates [6]. As p
changes from 1 to 0, the ratio ΩM/ΩE changes continu-
ously from 1 to about 1.27 (' 4/π) (see Fig. 4), which
is the average ratio of the Manhattan distance between
two random points in a plane and the Euclidean distance
between them [5,10].

3 Conclusions

We note that the TSP on randomly diluted lattice is cer-
tainly a trivial problem when p = 1 (lattice limit) as
it reduces to the one-dimensional TSP (the connections
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Fig. 2. Plot of ΩE, ΩM and ΩM/ΩE against p for N = 64
cities, obtained using the optimization programs (exact). The
error bars are due to configurational fluctuations. The extrapo-
lated values of ΩE, ΩM and ΩM/ΩE are indicated by horizontal
arrows on the y-axis.
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Fig. 3. Plot of ΩE, ΩM and ΩM/ΩE against p for N =
100 cities, obtained using the optimization programs (exact).
The error bars are due to configurational fluctuations. The
extrapolated values of ΩE, ΩM and ΩM/ΩE are indicated by
horizontal arrows on the y-axis.
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Fig. 4. Plots of ΩE, ΩM and of ΩM/ΩE in the p → 0 limit,
against 1/N . The error bars are due to configurational fluctu-
ations. The extrapolated value of ΩE, ΩM and ΩM/ΩE in this
p→ 0 limit for N →∞ are indicated by horizontal arrows on
the y-axis.

in the optimal tour are between the nearest neighbours
along the lattice). Here ΩE(p) = ΩM(p) = 1. However, it is
certainly NP-hard at the p→ 0 (continuum) limit, where
ΩE ' 0.73 and ΩM ' 0.93 (extrapolated for large system
sizes N). We note that ΩM remains practically close to
unity for all values of p < 1. Our numerical results also
suggest that ΩM/ΩE ' 4/π as p → 0. It is clear that the
problem crosses from triviality (for p = 1) to the NP-hard
problem (for p → 0) at a certain value of p. We did not
find any irregularity in the variation ofΩ at any p. A naive
expectation might be that around the percolation point,
beyond which the marginally connected lattice spanning
path is snapped off [7], the ΩE or ΩM suffers some irreg-
ularity. The absence of any such irregularity can also be
justified easily: the travelling salesman has to visit all the
occupied lattice sites (cities), not necessarily those on the
spanning cluster. Also, the TSP on dilute lattices has got
to accommodate the same kind of frustration as the (com-
pact) self-avoiding chains on dilute (percolating) lattices,
although there the (collapsed) polymer is confined only
to the spanning cluster. This indicates that the transition
occurs either at p = 1− or at p = 0+. From the considera-
tion of frustration for the TSP even at p = 1−, it is almost
certain that the transition occurs at p = 1. However, this
point requires further investigations.

We are grateful to O.C. Martin and A. Percus for very useful
comments and suggestions.
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