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Abstract: We present a novel study of the time evolutions of entangled states of three spin-1/2 particles in the presence

of a constant external magnetic field, which causes the individual spins to precess and leads to remarkable periodicities in

the correlations and density matrices. The emerging patterns of periodicity are studied explicitly for different entangled

states and in detail for a particular initial configuration of the velocities. Contributions to precession of anomalous magnetic

moments are analysed and general results are also obtained. We then introduce an electric field orthogonal to the magnetic

field, linking to the preceding case via a suitable Lorentz transformation, and obtain the corresponding Wigner rotations of

the spin states. Finally, we point out for the first time that the entangled states corresponding to well-known ones in the

study of 3-particle entanglements, may be classified systematically using a particular coupling of three angular momenta.

Keywords: Quantum entanglement; Wigner rotation; Lorentz transformation; Density matrix

PACS Nos.: 03.65.Ud; 03.65.Ca; 03.67.-a; 03.67.Mn

1. Introduction

Schrödinger had pointed out long time ago [1] that quan-

tum entanglement is a crucial element of quantum

mechanics. In fact quantum entanglement is one of the

most peculiar feature that distinguishes quantum physics

from classical physics and lies at the heart of what is now

quantum information theory [2]. Quantum physics allows

correlations between spatially separated systems that are

fundamentally different from classical correlations, and

this difference becomes evident when entangled states

violate Bell-type inequalities that place an upper bound on

the correlations compatible with local hidden variable (or

local realistic) theories [3, 4]. In the last two decades

research has been very focused on quantum entanglement

because the field of quantum information theory (cf. [5, 6])

has developed rather quickly to be an important one.

It is very important to get a good understanding of

entanglement properties of the quantum states, under

effects of accelerations (Lorentz transformations) and

magnetic fields (constant and homogeneous), e.g., in

studying quantum entangled states of the particles that are

produced and detected in Stern–Gerlach experiments [7].

The issues of quantum entanglement in (constant) external

magnetic field were addressed in a previous paper [8],

through the approach of Wigner rotations of canonical spin.

We explored quantum entanglement in the presence of

external fields in which the entangled spin states evolved

instead of moving away (after being generated in entangled

states) as free particles. Considering frames of observers

related through Lorentz transformations, it was shown that

the entanglement is frame independent but the violation of

Bell’s inequality is frame dependent. Similar features and

correlations (or degrees of entanglement) were noted for

spins undergoing precession in a magnetic field in that

study. However, the study of quantum entanglement in

magnetic fields was limited to 2-particle states of total spin

zero. The total spin being zero the effects of spin preces-

sion in magnetic field cancel (derived explicitly).

Here we remove this restriction and consider entangled

three-particle states of different total spins. Thus we study

the consequences of spin precessions induced by external

magnetic fields on three spinning particles, and entangled*Corresponding author, E-mail: anirban.chakraborti@ecp.fr
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3-particle states in constant external magnetic fields. The

unitary action is indeed local but it is now time dependent.

A remarkable new aspect emerges: The correlations of the

entangled states exhibits periodicity which we explore

systematically. Different classes of well-known entangled

states, appear, increase, decrease and disappear in a peri-

odic fashion. They can be present simultaneously, and all

of these happen respecting the overall unitarity constraints.

To our knowledge such periodic correlations are

obtained and displayed here for the first time. The preces-

sions being induced by unitary matrices the initial 3-tangles

are conserved. But our aim is to display how such a con-

straint leaves room for rich and subtle patterns of period-

icity in the correlations involved. We emphasize that such

effects are not implemented via some arbitrary and artificial

prescription but in a typical physical situation, namely the

presence of a magnetic field. New correlations (not present

initially) appear, evolve and disappear periodically.

Then we also introduce an electric field orthogonal to

the magnetic field, and obtain the corresponding Wigner

rotations of the spin states. Finally, in this paper, we pro-

pose a new scheme of systematic classification of the

entangled states corresponding to well-known ones in the

study of 3-particle entanglements (viz. Greenberger-Horne-

Zeilinger GHZj i; Werner Wj i; flipped Werner eW
�

�

�

and

their variant states), using a particular coupling of three

angular momenta.

The plan of the paper is as follows: We introduce the

notations and formalism in Sect. 2 In Sects. 3 and 4, the

emerging patterns of periodicity in correlations and density

matrices, respectively, are studied explicitly for different

entangled states, and particularly for certain initial con-

figuration of the velocities. In Sect. 5, we study the case

with an electric field orthogonal to the magnetic field,

linking to the preceding case via Lorentz transformation,

and obtain the corresponding Wigner rotations of the spin

states. In Sect. 6, we demonstrate the proposed scheme of

systematic classification of the entangled states corre-

sponding to well-known ones in the study of 3-particle

entanglements, using the particular coupling of three

angular momenta. Finally, we make some concluding

remarks and give an outlook of future directions of work in

Sect. 7.

2. Spin-1/2 particles in constant magnetic field:

formalism

In this section, we describe the formalism and notations:

(i) The unitary transformation matrices acting on the spin

states of three particles of spin-1/2 and positive rest

mass will be constructed for arbitrary initial velocities

ðv1
!; v2
!; v3
!Þ of the particles (1, 2, 3) respectively and a

constant magnetic field B
!
; and the basic precession

equations [8–10] will be used and generalized.

(ii) A particularly simple configuration of the initial

velocities is then selected for detailed study (later in

Sect. 3). This would permit us to display the contents

of the generalized equations, for a few selected cases

of particular interest without obscuring the basic

features due to a profusion of parameters. This will be

achieved by restricting the initial velocities to a plane

orthogonal to the magnetic field B
!

and assuming

them to be of equal magnitude, namely by imposing

B
!� vi
!¼ 0; vi

!�
�

�

� ¼ v ði ¼ 1; 2; 3Þ: ð1Þ

Since B
!� v! and v!

�

�

�

� are constants of motion, the

conditions 1 will hold for all time t.

Eight initial entangled 3-particle states would be selected

for detailed study in such a context. They are encoded using

the following notations (for our three spin-1/2 particles)

ijkj i � ij i � jj i � kj i; ð2Þ

where

jii � ð þj i; �j iÞ � ð 1j i; 1
�

�

�

Þ; ð3Þ

and similarly for jj i; kj ið Þ:
In such notations the states at time t = 0 are

1
ffiffiffi

2
p 111j i þ � 111

�

�

�� �

; ð4Þ

1
ffiffiffi

3
p 111

�

�

�

þ expð�i/Þ 111
�

�

�

þ expði/Þ 111
�

�

�� �

; ð5Þ

and

1
ffiffiffi

3
p 111

�

�

�

þ expði/Þ 111
�

�

�

þ expð�i/Þ 111
�

�

�� �

; ð6Þ

where ð� ¼ �Þ and / ¼ 0;� 2p
3

� �

:
Not only do these states have direct correspondence to

the GHZj i; Wj i; eW
�

�

�

states familiar in the study of 3-par-

ticle entanglements [7, 11] (Ref. [11] cites original sour-

ces), but they have also been constructed long ago [12, 13]

in the study of coupling of three angular momenta

involving eigenvalues of the operator

Z ¼ ðJ1
!� J2

!Þ � J3
!
; ð7Þ

of three angular momenta ðJ1
!
; J2
!
; J3
!Þ; as is briefly

explained in Sect. 6

(iii) We will follow the time-evolution of the states Eqs.

(4–6) with special attention to periodic oscillations

(in Sect. 3), and also study the corresponding
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periodic density matrices (in Sect. 4), displaying

many interesting features.

(iv) We will generalize the background field to include a

constant electric field E
!
; orthogonal to the magnetic

field B
!
; such that

E
!� B
!¼ 0; E

!�
�

�

�

�

�\ B
!�
�

�

�

�

�:

This constraint would permit us to obtain the results via

an appropriate Lorentz transformation (in Sect. 5), and

adapt the results from Ref. [8] (citing original sources) for

the present 3-particle case.

First, following the lines of Ref. [8], for a single particle

we denote ðB!; v!; R
!Þ to be respectively the constant,

homogeneous magnetic field, the velocity and the polari-

zation. With unit vectors ðB̂; v̂Þ and c = 1, we have

B
!¼ B � B̂ v!¼ v � v̂; c ¼ ð1� v2Þ1=2: ð8Þ

The anomalous magnetic moment is denoted by

â ¼ ðg� 2Þ=2: ð9Þ

We define, for mass m and charge e,

x!¼ eB

mc
B̂

X
!¼ âeB

mc
ðcB̂� ðc� 1ÞðB̂:v̂Þv̂Þ:

ð10Þ

The equations for v̂ and R
!

are

d v!
dt
¼� x!� v!

d R
!

dt
¼� ðx!þ X

!Þ � R
!
:

ð11Þ

The constants of motion are ðv; B̂ � v̂Þ and the moduli

x ¼ eB

mc

� �

X ¼ âeB

mc

� �

c2 � ðc2 � 1ÞðB̂ � v̂Þ2
	 
1=2

ð12Þ

such that x!¼ xx̂; X
!¼ XX̂:

Introducing an intermediate set of rotating axes, one can

finally obtain the time-dependent unitary transformation

matrix acting on spin states 1
2

�

�

�

; � 1
2

�

�

�� �

of a particle

moving with velocity v! as

M ¼ exp �i
Xt

2
ðX̂ � r!Þ

� �

exp �i
xt

2
ðB̂ � r!Þ

	 


ð13Þ

where r! denote the Pauli matrices and the components of

X
!

are (assuming ðB̂ � v̂Þ 6¼ �1Þ

X1 ¼ðB̂ � X
!Þ ¼ aeB

mc
ðc� ðc� 1ÞðB̂ � v̂Þ2Þ

X2 ¼
ðB̂� v̂Þ � X!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðB̂ � v̂Þ2
q ¼ 0

X3 ¼
ðB̂� ðB̂� v̂ÞÞ � X!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðB̂ � v̂Þ2
q

¼ âeB

mc
ðc� 1ÞðB̂ � v̂Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðB̂ � v̂Þ2
q

:

ð14Þ

Below we leave aside the particularly simple case

arising for ðB̂ � v̂Þ ¼ �1:

We follow the same prescription as in Ref. [8], and

denote

B̂ � r!¼ðb1r1 þ b2r2 þ b3r3Þ
X̂ � r!¼ðl1r1 þ l3r3Þ;

ð15Þ

so that

b2
1 þ b2

2 þ b2
3 ¼ 1

l2
1 þ l2

3 ¼ 1; l2 ¼ 0:
ð16Þ

We also introduce the notations

ðc; sÞ � cos
xt

2

	 


; sin
xt

2

	 
	 


ðc0; s0Þ � cos
Xt

2

� �

; sin
Xt

2

� �� �

;
ð17Þ

so that we can now write

M �
a �ib

�ib	 a	

�

�

�

�

�

�

�

�

; ð18Þ

where we define

a ¼ðc0 � il3s0Þðc� ib3sÞ � l1s0ðb1 þ ib2Þs
b ¼ðc0 � il3s0Þðb1 � ib2Þsþ l1s0ðcþ ib3sÞ; ð19Þ

which will be the precession parameters. Note that this pre-

cession parameter a should not be confused with the anom-

alous magnetic moment â; introduced earlier in Eq. (9).

Using the notations defined above, we obtain the

unitarity constraint

MyM � ðaa	 þ bb	Þ 1 0

0 1

�

�

�

�

�

�

�

�

¼ 1 0

0 1

�

�

�

�

�

�

�

�

: ð20Þ

The action of M on the spin states

ð þj i; �j iÞ � 1j i; 1
�

�

�� �

¼
1

0

�

�

�

�

�

;
0

1

�

�

�

�

�� �

; ð21Þ

is given by

M 1j i; 1
�

�

�� �

¼ a 1j i � ib	 1
�

�

�� �

; �ib 1j i þ a	 1
�

�

�� �� �

: ð22Þ
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So far we have been considering a single particle with

velocity v!: For three particles with velocities ðv1
!; v2
!; v3
!Þ

we denote the corresponding precession parameters as

ða1; b1Þ; ða2; b2Þ; ða3; b3Þ

generalizing appropriately (a, b) of Eq. (19)

Thus, for example, an initial state at t = 0,

Aj i � 1
ffiffiffi

2
p ð 111j i þ 111

�

�

�

Þ; ð23Þ

will evolve as

ðMð1Þ �Mð2Þ �Mð3ÞÞ Aj i ¼ 1
ffiffiffi

2
p a1 1j i � ib	1 1

�

�

�� �

a2 1j i � ib	2 1
�

�

�� �

a3 1j i � ib	3 1
�

�

�� �

þ 1
ffiffiffi

2
p �ib1 1j i þ a	1 1

�

�

�� �

�ib2 1j i þ a	2 1
�

�

�� �

�ib3 1j i þ a	3 1
�

�

�� �

;

ð24Þ

or

Mð1Þ �Mð2Þ �Mð3Þ Aj i ¼ d111 111j i þ d111 111
�

�

�

þ d111 111
�

�

�

þ d111 111
�

�

�

þ d111 111
�

�

�

þ d111 111
�

�

�

þ d111 111
�

�

�

þ d111 111
�

�

�

; ð25Þ

where

d111 ¼
1
ffiffiffi

2
p ða1a2a3 þ ib1b2b3Þ

d111 ¼ �
1
ffiffiffi

2
p ða1b

	
2b
	
3 þ ib1a

	
2a
	
3Þ

d111 ¼ �
1
ffiffiffi

2
p ðb	1a2b

	
3 þ ia	1b2a

	
3Þ

d111 ¼ �
1
ffiffiffi

2
p ðb1b2a3 þ ia1a2b3Þ

d111 ¼
1
ffiffiffi

2
p ða	1a	2a	3 þ ib	1b

	
2b
	
3Þ

d111 ¼ �
1
ffiffiffi

2
p ðib	1a2a3 þ a	1b2b3Þ

d111 ¼ �
1
ffiffiffi

2
p ðia1b

	
2a3 þ b1a

	
2b3Þ

d111 ¼ �
1
ffiffiffi

2
p ðia1a2b

	
3 þ b1b2a

	
3Þ:

ð26Þ

The coefficients above now involve three distinct

periodic time dependences through

ðc; sÞi � cos
xit

2

	 


; sin
xit

2

	 
	 


ðc0; s0Þi � cos
Xit

2

� �

; sin
Xit

2

� �� �

;
ð27Þ

where (i = 1, 2, 3), determined by the initial velocities

ðv1
!; v2
!; v3
!Þ and their orientations with respect to B

!
: Note

that we ignore the mutual interactions of the particles

assumed to be weak enough as compared to that with a

strong magnetic field B
!
:

The probability associated to the state ijkj i is defined to be

Pijk ¼ d	ijkdijk: ð28Þ

We note that in ijkj i; the sum of the probablities of ij i
being either 1j i or 1

�

�

�

must be 1. Using the relation

ðaia
	
i þ bib

	
i Þ ¼ 1 ði ¼ 1; 2; 3Þ ð29Þ

systematically, one may check that, for example,

P11 ¼ P111 þ P111

¼ 1

2
ða1a

	
1a2a

	
2 þ b1b

	
1b2b

	
2Þ

ð30Þ

P11 ¼
1

2
ða1a

	
1b2b

	
2 þ b1b

	
1a2a

	
2Þ ð31Þ

P1 ¼ P11 þ P11 ¼
1

2
ða1a

	
1 þ b1b

	
1Þða2a

	
2 þ b2b

	
2Þ ¼

1

2
:

ð32Þ

Similarly,

P1 ¼ P11 þ P11 ¼
1

2
: ð33Þ

Hence

P1 þ P1 ¼ 1: ð34Þ

Analogous results hold for (j, k).

For the general configuration the interplay of the periods

(see Eq. (27)]

4p
xi
;
4p
Xi

� �

ði ¼ 1; 2; 3Þ ð35Þ

implies a rich structure in the variation with t of the

coefficients dijk in Eq. (25) and the correlations Eq. (28).

Such variations will of course depend on the velocities and

masses involved.

3. Periodic correlations for 3-particle states

in a magnetic field

In this section we will select, to start with, a simple case

and try to follow closely the periodicities associated with

the initial entangled 3-particle states given by Eqs. (4–6).

The constant magnetic field B
!

is taken to be along the x

axis,

B
!¼ ðB; 0; 0Þ: ð36Þ

Three equal mass spin-1/2 particles (created, say, by the

disintegration of a single one at rest) are assumed to have

their initial velocities in the yz-plane and to be of equal

magnitude, so that

A. Chakrabarti, A. Chakraborti



B
!� vðiÞ

�! ¼ 0; vðiÞ
�!�
�

�

� ¼ v ði ¼ 1; 2; 3Þ: ð37Þ

Since v!2
and B
!� v!are constants of motion, the velocities

will stay in the yz plane and remain of equal magnitude. The

three velocities rotate uniformly in the yz-plane.

The precession equations Eq. (11) now simplify (for

each case) to

d R
!

dt
¼ �ðx!þ X

!Þ � R
!
;

where

x!¼ eB

mc
B̂ � xB̂

X
!¼ âeB

m
B̂ ¼ âcxB̂ � XB̂:

ð38Þ

and hence

d R
!

dt
¼ �ðxþ XÞB̂� R

!
: ð39Þ

Now in Eq. (24) the unitary transformation acting on a

state ijkj i is given by the matrix

M �M �M

where

M �
a �ib

�ib a

�

�

�

�

�

�

�

�

; ð40Þ

and

a ¼ cos
xþ X

2
t

� �

b ¼ sin
xþ X

2
t

� �

:

ð41Þ

3.1. Case 1

We start by studying the time-evolution of the state Eq. (4).

One obtains at time t

M�M�M
1
ffiffiffi

2
p ð 111j i þ � 111

�

�

�

Þ

¼ f111 111j i þ f111 111
�

�

�

þ f111 111
�

�

�

þ f111 111
�

�

�

þ f111 111
�

�

�

þ f111 111
�

�

�

þ f111 111
�

�

�

þ f111 111
�

�

�

; ð42Þ

where

f111 ¼
1
ffiffiffi

2
p ða3 þ i�b3Þ ¼ �f111 ð43Þ

and

f111 ¼ f111 ¼ f111 ¼ f111 ¼ f111 ¼ f111

¼ � 1
ffiffiffi

2
p abðaþ �ibÞ:

ð44Þ

The corresponding probabilities given by Pijk = fijk
* fijk

are

P111 ¼P111 ¼
1

2
ð1� 3a2b2Þ

¼ 1

2
1� 3

4
sin2ððxþ XÞtÞ
� �

� � ð45Þ

P111 ¼ P111 ¼ P111 ¼ P111 ¼ P111 ¼ P111

¼ 1

8
ðsin2ððxþ XÞtÞÞ;

ð46Þ

consistent with the constraint of
X

ijk

Pijk ¼ 1: ð47Þ

Figure 1 shows the variations of the probabilities Pijk

defined in Eqs. (45) and (46) with h � xþX
2

t
� �

: The

periodic variations of the coefficients are easy to follow.

Let us emphasize some special points:

(i) At t = 0, one starts with a = 1, b = 0

wj i �
X

ijk

fijk ijkj i ¼ 1
ffiffiffi

2
p 111j i þ � 111

�

�

�� �

: ð48Þ

(ii) At t ¼ p
2ðxþXÞ ; ða ¼ b ¼ 1

ffiffi

2
p )

wj i � exp ði�p=4Þ
2
ffiffiffi

2
p ð 111j i þ � 111

�

�

�

Þ � ð 111
�

�

�

þ 111
�

�

�


þ 111
�

�

�

Þ � ð 111
�

�

�

þ 111
�

�

�

þ 111
�

�

�

Þg:
ð49Þ

Note the negative signs before the two triplets, whose

consequences have been discussed in Section 4.
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Fig. 1 Plot of the variations of the probabilities Pijk defined in the

text by Eq. (45) (curve 1) and Eq. (46) (curve 2) with h � xþX
2

t
� �
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Now all the 8 possible states are present with equal

probability

Pijk ¼
1

8
ði; j; kÞ ¼ 1 or 1: ð50Þ

(iii) At t ¼ p
ðxþXÞ ; ða ¼ 0; b ¼ 1)

wj i ¼ �
ffiffiffi

2
p ð 111j i þ � 111

�

�

�

Þ: ð51Þ

Note that apart from an overall sign (�) one is back at the

starting point.

3.2. Case 2

We will now study the time-evolution with the next initial

state given by Eq. (5):

wj iðt¼0Þ ¼ wj ið0Þ

¼ 1
ffiffiffi

3
p 111

�

�

�

þ expð�i/Þ 111
�

�

�

þ expði/Þ 111
�

�

�� �

;

ð52Þ

where ð/ ¼ 0;� 2p
3
Þ: We define

f ¼ ð1þ expð�i/Þ þ expði/ÞÞ
¼ 3 ð/ ¼ 0Þ

¼ 0 / ¼ � 2p
3

� �

:

ð53Þ

At time t, the periodic evolution gives [using Eq. (40)]

wj iðtÞ ¼ M �M �M wj ið0Þ
¼ c0 111j i þ c0 111

�

�

�

þ c1 111
�

�

�

þ c2 111
�

�

�

þ c3 111
�

�

�

þ c1 111
�

�

�

þ c2 111
�

�

�

þ c3 111
�

�

�

:

ð54Þ

where with

a ¼ cos
xþ X

2
t

� �

; b ¼ sin
xþ X

2
t

� �

and implementing systematically a2 ? b2 = 1, we have

ffiffiffi

3
p

c0 ¼�ia2bf ;
ffiffiffi

3
p

c0 ¼�ab2f
ffiffiffi

3
p

c1 ¼ að1� b2f Þ;
ffiffiffi

3
p

c1 ¼ ibð1� a2f Þ
ffiffiffi

3
p

c2 ¼ aðexpð�i/Þ � b2f Þ;
ffiffiffi

3
p

c2 ¼ ibðexpð�i/Þ � a2f Þ
ffiffiffi

3
p

c3 ¼ aðexpði/Þ � b2f Þ;
ffiffiffi

3
p

c3 ¼ ibðexpði/Þ � a2f Þ:
ð55Þ

The correlations have periodicities determined by (a, b)

above and are

P111 ¼
1

3
a4b2f 2;P111 ¼

1

3
a2b4f 2;

P111 ¼
1

3
b2ð1� a2f expð�i/ÞÞð1� a2f expði/ÞÞ;

P111 ¼
1

3
a2ð1� b2f expð�i/ÞÞð1� b2f expði/ÞÞ;

P111 ¼
1

3
a2ð1� b2f expð�i/ÞÞð1� b2f expði/ÞÞ;

P111 ¼
1

3
b2ð1� a2f expð�i/ÞÞð1� a2f expði/ÞÞ;

P111 ¼
1

3
b2ð1� a2f Þ2;P111 ¼

1

3
a2ð1� b2f Þ2:

ð56Þ

After this derivation, one notes that for:

(i) (/ = 0 , f = 3)

P111 ¼ 3a4b2;P111 ¼ 3a2b4

P111 ¼ P111 ¼ P111 ¼
1

3
b2ð1� 3a2Þ2

P111 ¼ P111 ¼ P111 ¼
1

3
a2ð1� 3b2Þ2:

ð57Þ

consistent with the constraint Eq. (47) of
P

ijk Pijk = 1.

Figure 2 shows the variations of the probabilities Pijk

defined in Eq. (57) with h � xþX
2

t
� �

:

(ii) (/ ¼ � 2p
3
; f ¼ 0)

P111 ¼ P111 ¼ 0

P111 ¼ P111 ¼ P111 ¼
1

3
b2

P111 ¼ P111 ¼ P111 ¼
1

3
a2:

ð58Þ

consistent with the constraint Eq. (47) of
P

ijk Pijk = 1.

 0
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Fig. 2 Plot of the variations of the probabilities Pijk defined in the

text by Eq. (57) with h � xþX
2

t
� �

; where P111 is curve 1, P111 is curve

2, P111 ¼ P111 ¼ P111 are curve 3 and P111 ¼ P111 ¼ P111 are curve 4
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Case (i) exhibits a richer pattern of periodicity which we

analyse now, pinpoiting some special values of t. At t = 0,

one starts with a = 1, b = 0:

wj ið0Þ¼
1
ffiffiffi

3
p 111

�

�

�

þ 111
�

�

�

þ 111
�

�

�� �

: ð59Þ

At t ¼ p
ðxþXÞ ; ða ¼ 0; b ¼ 1Þ :

wj i ¼ i
ffiffiffi

3
p 111

�

�

�

þ 111
�

�

�

þ 111
�

�

�� �

: ð60Þ

we get the flipped over complementary triplet.

At t ¼ p
2ðxþXÞ ; ða ¼ b ¼ 1

ffiffi

2
p Þ :

wj i ¼ �i

2
ffiffiffi

6
p 3 111j i þ 111

�

�

�

þ 111
�

�

�

þ 111
�

�

�� �

þ 1

2
ffiffiffi

6
p 3 111

�

�

�

� 111
�

�

�

� 111
�

�

�

� 111
�

�

�� �

:

ð61Þ

Now all the possible ijkj i (8 in number) appear, grouped

as above according as the multiplicity of the index 1j i is

odd (3 or 1) or even (0 or 2).

Other interesting points are provided by the extrema of

(P111;P111Þ: For a2 = 2/3, b2 = 1/3,

P111 ¼
4

9
; P111 ¼

2

9

P111 ¼ P111 ¼ P111 ¼
1

9

P111 ¼ P111 ¼ P111 ¼ 0:

ð62Þ

Considering the positive roots for example,

a ¼
ffiffiffiffiffiffiffiffi

2=3
p

; b ¼ 1=
ffiffiffi

3
p

;

wj i ¼ �i

3
2 111j i þ 111

�

�

�

þ 111
�

�

�

þ 111
�

�

�� �

�
ffiffiffi

2
p

3
111
�

�

�

:

ð63Þ

For a ¼ 1=
ffiffiffi

3
p

; b ¼
ffiffiffiffiffiffiffiffi

2=3
p

;

P111 ¼
2

9
;P111 ¼

4

9

P111 ¼ P111 ¼ P111 ¼ 0

P111 ¼ P111 ¼ P111 ¼
1

9
;

ð64Þ

and

wj i ¼ �i
ffiffiffi

2
p

3
111j i � 1

3
2 111
�

�

�

þ 111
�

�

�

þ 111
�

�

�

þ 111
�

�

�� �

:

ð65Þ

Apart from the factor i changing place, the passage from

Eqs. (63) to (65) corresponds to

1j i; 1
�

�

�� �

! 1
�

�

�

; 1j i
� �

: ð66Þ

The coefficients for the cases above will be further

discussed in Sect. 4.

The time-evolution of the initial state

wj ið0Þ¼
1
ffiffiffi

3
p 111

�

�

�

þ expði/Þ 111
�

�

�

þ expð�i/Þ 111
�

�

�� �

ð67Þ

can be studied in closely analogous fashion, but we will not

repeat the steps again.

The periods considered above, typically generated by

(a, b), of Eq. (41) where (x;X) are given by Eq. (12) can

be long but diminish as B and the velocities increase in

magnitude.

4. Periodic density matrices

We have seen how, starting with a restricted initial state,

spin precessions in a magnetic field lead to periodic

appearances and disappearances of all the possible eight

states ijkj i of three spin-1/2 particles . Since such period-

icities are induced through ‘‘local’’ unitary transformations,

acting separately on each state �j i; the sum of the varying

correlations remains unity. Moreover, the basic invariant

measures of entanglement (3-tangle, 2-tangles) must also

be conserved. The corresponding constrained periodic

variations of the elements of the density matrices is briefly

studied below for special cases.

For

wj i ¼ f0 11j i þ f1 11
�

�

�

þ f2 11
�

�

�

þ f3 11
�

�

�� �

1j i
þ g0 11

�

�

�

þ g1 11
�

�

�

þ g2 11
�

�

�

þ g3 11j i
� �

1
�

�

�

ð68Þ

tracing out the index 3, the density matrix for the Eq. (12)

subsystem is

q12 ¼

a00 a01 a02 a03

a	01 a11 a12 a13

a	02 a	12 a22 a23

a	03 a	13 a	23 a33

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð69Þ

where

a00 ¼ f0f 	0 þ g3g	3; a01 ¼ f0f 	1 þ g3g	2
a02 ¼ f0f 	2 þ g3g	1; a03 ¼ f0f 	3 þ g3g	0
a11 ¼ f1f 	1 þ g2g	2; a12 ¼ f1f 	2 þ g2g	1
a13 ¼ f1f 	3 þ g2g	0; a22 ¼ f2f 	2 þ g1g	1
a23 ¼ f2f 	3 þ g1g	0; a33 ¼ f3f 	3 þ g0g	0:

ð70Þ

Similarly, one can obtain q23, q31.

The 3-tangle (invariant under permutations of particles

1, 2, 3) is obtained as follows [14]:

We define

fq12 ¼
0 �i
i 0

�

�

�

�

�

�

�

�

� 0 �i
i 0

�

�

�

�

�

�

�

�

q	12

0 �i
i 0

�

�

�

�

�

�

�

�

� 0 �i
i 0

�

�

�

�

�

�

�

�

: ð71Þ
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For the subsystems considered (q12 fq12) has at most two

non-zero eigenvalues.

Let (k2, k2) be the square roots (positive) of these two.

Then the 3-tangle is given by

s123 ¼ 4k1k2: ð72Þ

This can also be directly expressed in terms of the

coefficients of Eq. (68) above:

s123 ¼ 4 d1 � 2d2 þ 4d3j j; ð73Þ

where [in our notations of Eq. (68)]

d1 ¼ðf0g0Þ2 þ ðf1g1Þ2 þ ðf2g2Þ2 þ ðf3g3Þ2

d2 ¼ f0g0ðf1g1 þ f2g2 þ f3g3Þ
þ ðf1g1f2g2 þ f2g2f3g3 þ f3g3f1g1Þ

d3 ¼ f0f3g1g2 þ f1f2g0g3:

ð74Þ

The conversion of Eq. (72) to Eq. (73) permits us to

relate directly certain central features of the periodicities

studied in Sect. 3 to constraints imposed by the invariance

of Eq. (72) . In particular, let us now evaluate the crucial

role of the negative signs signalled below Eq. (49).

For the initial state Eq. (48), at t = 0

f0 ¼ �g0 ¼
1
ffiffiffi

2
p

f1 ¼ f2 ¼ f3 ¼ g1 ¼ g2 ¼ g3 ¼ 0

ð75Þ

and thus

d1 ¼
1

4
; d2 ¼ d3 ¼ 0: ð76Þ

Hence from Eq. (73)

s123 ¼ 1 ð77Þ

a well-known result for GHZ states Eq. (48).

At t ¼ p
2ðxþXÞ ; from Eqs. (49) to (74)

ðd1; d2; d3Þ ¼
exp ip=4

ð2
ffiffiffi

2
p
Þ4
ð4; 6;�2Þ: ð78Þ

Hence again (as expected),

s123 ¼
4

64
4� 2:6� 4:2j j ¼ 1: ð79Þ

If all the terms have the same sign, as in

wj i0¼ 1

2
ffiffiffi

2
p ð 111j i þ 111

�

�

�

þ 111
�

�

�

þ 111
�

�

�

Þ

þ 1

2
ffiffiffi

2
p ð 111

�

�

�

þ 111
�

�

�

þ 111
�

�

�

þ 111
�

�

�

Þ
ð80Þ

then d3 changes sign and

s123 ¼
4

64
4� 2:6þ 4:2j j ¼ 0: ð81Þ

Thus the two negative signs in Eq. (49) alters s123 from a

minimum (0) to maximum (1).

For the initial state Eq. (52), using Eqs. (53–55) the f’s

in Eq. (68) have cubic periodic terms given by (ab2,a2b),

where

a ¼ cos
xþ X

2
t

� �

; b ¼ sin
xþ X

2
t

� �

: ð82Þ

Hence P12 in Eqs. (69) and (70) has sixth order periodic

terms (a2b4, a4b2, a3b3). Such periodicities indeed turn out

to be compatible with [15]:

s123 ¼ 0; s12 ¼ s13 ¼ s23 ¼
4

9
: ð83Þ

One realizes now more fully how elaborate and subtle

patterns of periodicities are compatible with constraints of

local unitary transformations involved in spin-precessions.

5. Constant orthogonal electric and magnetic fields

We briefly indicate below how the periodicities studied so

far, for a magnetic field alone are affected by the presence

of an electric field E
!

satisfying

E
!
:B
!¼ 0; E

!�
�

�

�

�

�\ B
!�
�

�

�

�

�: ð84Þ

Consider a Lorentz transformation corresponding to the

4-velocity

u00 ¼ 1� E2

B2

� ��1=2

1;
E

B
Ê � B̂

� �

ð85Þ

denoting E
!¼ E � Ê; B

!¼ B � B̂ ðÊ2 ¼ 1 ¼ B̂2Þ:
In the transformed frame the tensor ðE!; B

!Þ reduces to

ðE!
0
; B
!0Þ where

E
!0 ¼ 0; B

!0 ¼ 1� E2

B2

� ��1=2

B
! ð86Þ

such that

B
!02 ¼ B

!02 � E
!02 ¼ B

!2
� E
!2

B
!0 � E
!0 ¼ 0 ¼ B

!� E
!
:

ð87Þ

So in this frame, one finds back the situation studied in

the Sects. 2–4, with

B0 ¼ ðB2 � E2Þ1=2: ð88Þ

The velocities and the spins of the particles are

transformed according to standard rules [8, 9]. We now

recapitulate some essential points.

A 4-velocity u is transformed by a Lorentz transforma-

tion corresponding to u00 to u0 such that

A. Chakrabarti, A. Chakraborti



u00 ¼ ðu0u000 þ u!� u00
!
Þ: ð89Þ

Define

a ¼ð1þ u0Þð1þ u000Þð1þ u00Þ
b ¼ð1þ u0 þ u000 þ u00Þ;

ð90Þ

and

cos
d
2
¼ b

ffiffiffiffiffi

2a
p : ð91Þ

The spin states are conserved if

u!� u00
!
¼ 0:

Otherwise they undergo a Wigner rotation d about the axis

k̂ ¼ u!� u00
!

u!� u00
!�

�

�

�

�

�

; ð92Þ

such that

þj i ! þj i0¼ cos
d
2
þ ik̂3 sin

d
2

� �

þj i

þ iðk̂1 � ik̂2Þ sin
d
2
�j i

�j i ! �j i0¼ iðk̂1 þ ik̂2Þ sin
d
2
þj i

þ cos
d
2
� ik̂3 sin

d
2

� �

�j i:

ð93Þ

The inverse rotation ðd! �dÞ expresses ð þj i; �j iÞ in

terms of ð þj i0; �j i0Þ:
The crucial point to note is that in Eq. (5) apart from the

ðc0; v̂0Þ corresponding to the transformed velocities

[depending on the initial velocity v! and u00 given by Eq.

(85)], B is replaced by B0 = (B2 - E2)1/2.

The magnitudes ðx0;X0Þ thus obtained determine the

modified periodicities. This is the consequence of the

presence of E
!

in the initial frame.

In the transformed frame our preceeding results (for E
!¼ 0)

can be implemented systematically along with the velocities

transformed corresponding to Eq. (85). Then the inverting of

Eq. (93) gives the results for the initial frame ( E
! 6¼ 0).

6. Classification scheme of 3-particle entangled states

In this section, we propose a new classification scheme of

the 3-particle entangled states, by using the eigenstates of

Z ¼ ðJ1
!� J2

!Þ � J3
!

of three angular momenta.

One can systematically construct eigenstates [12, 13] of

three coupled angular momenta (J1
!
; J2
!
; J3
!

) by diagonal-

izing the operators

ðJ1
!þ J2

!þ J3
!Þ2

ðJð0Þ1 þ J
ð0Þ
2 þ J

ð0Þ
3 Þ

and Z ¼ ðJ1
!� J2

!Þ � J3
!
;

ð94Þ

where Ji
(0), (i = 1, 2, 3) are the projections on the z axis.

The states are denoted by the respective eigenvalues of

the above operators (jðjþ 1Þ; jð0Þ; f) as jmfj i:
Not only one obtains a complete mutually orthogonal set

of eigenstates for each j but along with reduction with

respect to the rotation group one obtains simultaneously a

reduction with respect to S3, the permutation group of three

particles. This is in sharp contrast with the usual 2-step

reduction via 3-j coefficients where such permutations lead

to 6-j coefficients. For our purposes, we need here only the

results for j1 ¼ j2 ¼ j3 ¼ 1
2
:

In the Table 1, the states on the left correspond to

eigenvalues (j;m; f) respectively of the operators Eq. (94)

and those on the right to the values of � 1
2

of (m1, m2, m3)

of Ji
(0), (i = 1, 2, 3) denoted by ( 1j i; 1

�

�

�

Þ:
This provides the complete set of 8 states spanning the

space of possible values of (m1, m2, m3). Thus

1
ffiffiffi

2
p 3

2

3

2
0

�

�

�

�

�

� 3

2
� 3

2
0

�

�

�

�

�� �

¼ 1
ffiffiffi

2
p ð 111j i � 111

�

�

�

Þ; ð95Þ

giving the GHZj i states as a doublet.

The others correspond directly to the Werner ( Wj i) and

the flipped Werner ( eW
�

�

�

) and their variants with relative

phases exp �i 2p
3

� �

; which we had mentioned in the remarks

below Eq. (6) in Sect. 2.

Of the three operators in Eq. (94) the first two are

invariant under all permutations of the particles (1, 2, 3).

The remaining one (Z) is invariant under circular permu-

tations of (1, 2, 3) and just changes sign under Eqs. (12),

(23) and (31). This is in sharp contrast to the standard 2-

step couplings where one has to pass from one 3-j coupling

scheme to another under permutations. This is at the root of

Table 1 The states on the left correspond to eigenvalues (j;m; f)

respectively of the operators Eq. (94) and those on the right to the

values of � 1
2

of (m1, m2, m3) of Ji
(0), (i = 1, 2, 3) denoted by

( 1j i; 1
�

�

�

)

jmfj i m1m2m3j i

3
2

3
2

0
�

�

�

111j i
3
2
�3
2

0
�

�

�

111
�

�

�

3
2

1
2

0
�

�

�

1
ffiffi

3
p ð 111
�

�

�

þ 111
�

�

�

þ 111
�

�

�

Þ
3
2
�1
2

0
�

�

�

1
ffiffi

3
p ð 111
�

�

�

þ 111
�

�

�

þ 111
�

�

�

Þ

1
2

1
2
�
ffiffi

3
p

4

�

�

�

E

1
ffiffi

3
p ðexpð�i 2p

3
Þ 111
�

�

�

þ expð
i 2p
3
Þ 111
�

�

�

þ 111
�

�

�

Þ

1
2
� 1

2
�
ffiffi

3
p

4

�

�

�

E

1
ffiffi

3
p ðexpð
i 2p

3
Þ 111
�

�

�

þ expð�i 2p
3
Þ 111
�

�

�

þ 111
�

�

�

Þ
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the simultaneous reduction under S3 via the implementa-

tion of Z. This also helps to explain the direct relations of

the Z-eigenstates with 3-tangles invariant under permuta-

tions of (1, 2, 3).

7. Conclusions

An external (constant) magnetic field induces a precession

of the spin of each particle of the entangled states con-

sidered, through local unitary transformations. Note that

for two particle states of total spin zero, studied in earlier

paper, the periodic precession of individual spins was not

present. Here we analysed three particle states where such

periodicities (2 and 4 periods respectively for the particular

cases illustrated) in correlations and density matrices were

remarkably displayed and intertwined. The patterns of

periodicity thus emerging were shown to be remarkably

rich and subtle. Such a study was presented for the first

time.

The individual precessions being implemented by local

unitary matrices, the initial 3-tangle was conserved. But

simply the verification of this fact was not the aim of the

analyses of Sect. 3 and 4. We went beyond that and dis-

played in details how the conservation left scope for

component periodic correlations to appear, increase and

decrease. We pinpointed the crucial roles of the signs of the

coefficients of different components, again for the first

time.

The generalization to include orthogonal electric field

was presented in Sect. 5, using the Wigner rotation. For

E = B, the Lorentz transformation via Eq. (85) is not well-

defined and for E [ B it becomes complex. The limiting

case E = B (e.g. for a plane wave field) will be studied

elsewhere using exact solutions [16] of the Dirac-Pauli

equations in such fields.

The remarkable and systematic correspondence of

famous entangled states to a specific coupling scheme for

3-angular momenta was presented in Sect. 6, and a new

classification scheme was proposed. We intend to study

this aspect in details elsewhere.

Finally one may note that unitary transformations may

be non-local when induced via unitary braid matrices [17,

18]. Acting on pure product states, they can then generate

entanglement. In the present work we started with states

already entangled and then followed their periodic ramifi-

cations as they evolved in the magnetic fields, which is

completely different. The unitary action here is indeed

local but it is now time dependent. Different classes of

well-known entangled states, appear, increase, decrease

and disappear in a periodic fashion. They can be present

simultaneously, and all of these happen respecting the

overall unitarity constraints.
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