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A Temperley-Lieb algebra is extracted from the operator structure of a new class
of N2 × N2 braid matrices presented and studied in previous papers and designated
as SÔ(q)(N ), S p̂(q)(N ) for the q-deformed orthogonal and symplectic cases, re-
spectively. Spin chain Hamiltonians are derived from such braid matrices and the
corresponding chains are studied. Time evolutions of the chains and the possibil-
ity of transition of data encoded in the parameters of mixed states from one end
to the other are analyzed. The entanglement entropies S(q, N) of eigenstates of the
crucial operator, namely, the q-dependent N2 × N2 projector P0 appearing in the cor-
responding Hamiltonian are obtained. Study of entanglements generated under the
actions of SÔ(N ), S p̂(N ) braid operators, unitarized with imaginary rapidities (spec-
tral parameters) is presented as a perspective. C© 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4774211]

I. INTRODUCTION

Interesting developments in fault-tolerant quantum computation using the braiding of anyons
have brought the theory of braid groups at the very core of topological quantum computing.1

Moreover, the recent study by Kauffman and Lomonaco that the “Bell matrix,” a specific braiding
operator from the solution of the Yang-Baxter equation, is universal implies that in principle all
quantum gates can be constructed from braiding operators together with single qubit gates.2 In
another very recent paper, the authors presented a new class of braiding operators from the Temperley-
Lieb algebra3 that generalized the Bell matrix to multi-qubit systems, thus unifying the Hadamard
and Bell matrices within the same framework.4

Here, we extract the Temperley-Lieb algebra from the operator structure of a new class of
N2 × N2 braid matrices presented and studied in previous papers and designated as SÔ(q)(N ),
S p̂(q)(N ) for the q-deformed orthogonal and symplectic cases, respectively.5 The connection between
spin chains and Temperley-Lieb algebras is well-established.6 We derive the spin chain Hamiltonians
from such braid matrices and study the corresponding chains. We then analyze the time evolutions
of the chains and the possibility of transition of data encoded in the parameters of mixed states
from one end to the other, following studies such as Ref. 7. We further obtain the entanglement
entropies S(q, N) of eigenstates of the crucial operator, namely, the q-dependent N2 × N2 projector
P0 appearing in the corresponding Hamiltonian.
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In a previous paper,5 the central result was the “canonical factorization” of the coefficient of
each projector (see Eq. (1) below). The spectral parameter θ in the coefficients is called “rapidity.”8, 9

The “rapidity” parameter Yang-Baxterizes the braid matrix.10–12 Usually it is real, as are the elements
of each projector. But under the transition θ → (iθ ), each coefficient due to canonical factorization
becomes a “phase.” Under complex conjugation (iθ → − iθ ), each coefficient is inverted. Hence,
if the projector(s) involved are real and also symmetric (as P0 in this paper, or the projectors of the
8-vertex braid matrix case studied in Ref. 13), quite evidently R̂(θ ) becomes unitary. This is what
we called “unitarization with imaginary rapidity,” and we presented a general formulation of this
approach in Ref. 13. Such a braid matrix, acting on the direct product of any three states in the
base space induces a unitary transformation preserving amplitudes. If such actions further generate
states exhibiting “entanglement” (see explicit treatments of Ref. 13), we call them “entanglement
generated by braid matrices unitarized with imaginary rapidities.” In the 8-vertex braid matrix,13

we displayed the remarkable and attractive properties of entanglement thus induced. In this paper,
we present as a perspective that we can unitarize with imaginary rapidities as in Ref. 13, the braid
operators SÔ(N ), S p̂(N ), and then study the entanglements generated under their actions.

II. BRAID MATRIX FORMALISM

In the context of exhaustive construction of “canonically factorized” forms 5 of braid matrices,
new classes of solutions with remarkable and intriguing properties were obtained for SOq(N) and
Spq(N). To distinguish these special cases, they were, respectively, denoted by SÔq (N ) and S p̂q (N ).
The aspects of that formalism5 necessary for our present study are summarized below.

For SOq(N) and Spq(N), the standard cases14 were first expressed in the form:

R̂ (θ ) = f+ (−θ )

f+ (θ )
P+ + f− (−θ )

f− (θ )
P− + f0 (−θ )

f0 (θ )
P0, (1)

where (P+ , P− , P0) form a complete basis of projectors, satisfying

Pi Pj = δi j Pi , P+ + P− + P0 = I. (2)

Since these are N2 × N2 q-dependent matrices, so is R̂ (θ ). All θ -dependence of R̂ (θ ) is in the
coefficients (f+ (θ ), f− (θ ), f0(θ )). As consequence of Eq. (2)

R̂ (θ ) R̂ (−θ ) = I(N 2×N 2) = IN ⊗ IN ≡ I ⊗ I, (3)

where I is the (N × N) unit matrix.
The factorization of the coefficients, along with (2), implies the “canonical factorization” of

R̂ (θ ) :

R̂ (θ ) = ( f+ (−θ ) P+ + f− (−θ ) P− + f0 (−θ ) P0) (4)

×(( f+ (θ ))−1 P+ + ( f− (θ ))−1 P− + ( f0 (θ ))−1 P0).

Like the projectors, the f’s will also depend on q, the parameter of “q-deformation.”
For R̂ (θ ) to be a braid matrix it must, by definition, satisfy the braid equation which provides

matricial representation of the third Reidemeister move in the theory of classification of braids and
knots. This means that defining (with “rapidities” (θ , θ ′))

R̂ (θ ) ⊗ I = R̂12 (θ ) ,

I ⊗ R̂ (θ ) = R̂23 (θ ) ,

and

B̂1 ≡ R̂12(θ )R̂23(θ + θ ′)R̂12(θ ′), (5)

B̂2 ≡ R̂23(θ ′)R̂12(θ + θ ′)R̂23(θ ′),
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the solutions for the coefficients must be found such that for a given set of explicitly defined
N2 × N2 dimensional projectors, one obtains

B̂1 = B̂2. (6)

In Ref. 5, the coefficients for standard known solutions for SOq(N) and Spq(N) were factorized
as in (1) and new solutions were obtained, which were studied in subsequent papers.15

The new classes (denoted as SÔq (N ) and S p̂q (N ), respectively) correspond to

f+ (θ ) = f− (θ ) = 1 (7)

and hence (with new solutions for f0)

R̂ (θ ) = P+ + P− + f0 (−θ )

f0 (θ )
P0

= I ⊗ I + (
f0 (−θ )

f0 (θ )
− 1)P0 (8)

≡ I ⊗ I + ω(θ )P0. (9)

In this paper, we analyze for the first time, the properties of P0 that makes the solution of (9)
possible. Later we consider ω(θ ) in that context. This turns out to be fruitful indeed.

III. SÔq(N), Sp̂q(N), AND TEMPERLEY-LIEB ALGEBRA

We define

(ω(θ ), ω(θ ′), ω(θ + θ ′)) ≡ (ω,ω′, ω′′). (10)

Implementing (9) in (5), one obtains

(B̂1 − B̂2) = (ω + ω′ + ωω′ − ω′′)((P0 ⊗ I ) − (I ⊗ P0))

+ωω′ω′′((P0 ⊗ I )(I ⊗ P0)(P0 ⊗ I )

−(I ⊗ P0)(P0 ⊗ I )(I ⊗ P0)). (11)

We first define some notations:

(1) i ≡ N − i + 1 (when i = i).
(2) (ij) as the (N × N) matrix with unity on row i and column j and all other elements zero.
(3) The q-brackets

[N ± 1] = q N±1 − q−(N±1)

q − q−1
. (12)

We then have the projectors P0 as N2 × N2 matrices:14

(1) For SOq(N), (N = 3, 4, 5, ...)

([N − 1] + 1)P0 =
N∑

i, j=1

q (ρi −ρ j )(i j) ⊗ (i j), (13)

and
(2) For Spq(N), (N = 2, 4, 6, ...)

([N + 1] − 1)P0 =
N∑

i, j=1

q (ρi −ρ j )(εiε j )((i j) ⊗ (i j)), (14)
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where

εi = 1, (i ≤ N/2),

εi = −1, (i > N/2). (15)

Note that we restrict q to be real, positive throughout so that one obtains real P0. Also, note that
the parameters ρ are N-tuples:

1. For SO(2n + 1):

ρ : (n − 1

2
, n − 3

2
, ...,

1

2
, 0,−1

2
, ...,−n + 1

2
). (16)

2. For SO(2n):

ρ : (n − 1, n − 2, ..., 1, 0, 0,−1, ...,−n + 1). (17)

3. For Sp(2n):

ρ : (n, n − 1, ..., 1,−1, ...,−n). (18)

The projectors, thus defined, can be shown to satisfy

(P0 ⊗ I )(I ⊗ P0)(P0 ⊗ I ) = k−2(P0 ⊗ I ), (19)

(I ⊗ P0)(P0 ⊗ I )(I ⊗ P0) = k−2(I ⊗ P0), (20)

where

k = ([N − 1] + 1), for SO(N ), (21)

k = ([N + 1] − 1), for Sp(N ). (22)

This is the core of the Temperley-Lieb algebra to be developed fully for spin chains, in Sec. IV. At
this stage, implementing (19) and (20) in (11), one obtains

(B̂1 − B̂2) = (ω + ω′ + ωω′ − ω′′ (23)

+k−2ωω′ω′′)((P0 ⊗ I ) − (I ⊗ P0)).

Hence the braid equation is satisfied, if

ω + ω′ + ωω′ − ω′′ + k−2ωω′ω′′ = 0. (24)

This nonlinear functional equation was solved in our previous paper.15 Denoting the special cases
as SÔ and S p̂ henceforward, the solution is given by

ω(θ ) = (
sinh(η − θ )

sinh(η + θ )
− 1), (25)

where

(eη + e−η) = k = q N−ε − q−N+ε

q − q−1
+ ε (26)

and

ε = 1 for SÔ(N ),

ε = −1 for S p̂(N ).
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We note the following points:

(1) Starting with the “standard solutions” of R̂ (θ ) (see (2.2) and (2.3) of Ref. 5) and letting
θ → ∞, one obtains the results (2.8) of Ref. 5. From (2) of the present work, one obtains the
result for R̂ (θ ) in terms of (P+ , P0) or (P− , P0). Since P0 has already been given, one may
now obtain easily the explicit expressions for P+ or P− . They indeed correspond to (1.11) and
(1.12) of Ref. 14. It may be easily verified that the coefficient of P+ (or P− ) does not satisfy
a constraint corresponding to (24). Thus, a Temperley-Lieb algebra is no longer obtained. Of
the three projectors (P+ , P− , P0), only one projector, P0, satisfies (19) and (20). Hence, P0 is
the crucial operator.

(2) An adequate solution of the nonlinear functional equation (24) in two variables (θ , θ ′) is not
evident to start with. But it does exist and accordingly, an explicit manageable solution (given
by (25) and (26)) is obtained.

(3) We can re-write (26) as

cosh η = 1

2
k = 1

2
([N ∓ 1] ± 1) (27)

(upper signs for SÔ(N ) and lower signs for S p̂(N )). We can also write

sinh η = ±1

2

√
k2 − 4 (28)

for both cases SÔ(N ) and S p̂(N ), and hence sinh η can be chosen to be positive or negative,
a point which we will revisit.

IV. SPIN CHAIN HAMILTONIAN AND TEMPERLEY-LIEB ALGEBRA

The chain Hamiltonian (and also higher order conserved quantities5) can be obtained directly
as follows:

We define
·
R̂(0) = (

d

dθ
R̂ (θ ))θ=0, (29)

and with
·

(R̂(0))l,l+1 acting on sites (l, l + 1), the Hamiltonian for an open chain of length r can be
written as

H =
r−1∑
l=1

I ⊗ ... ⊗ I ⊗ (
·
R̂(0))l,l+1 ⊗ I ⊗ ... ⊗ I, (30)

where I is the N × N unit matrix.
For a closed chain with circular boundary conditions, there is an additional term with

(
·
R̂(0))r,r+1, (r + 1 ≈ 1). (31)

For our case
·
R̂(0) = −(2 coth η)P0 = ∓(

2k

(k2 − 4)1/2
)P0 (32)

for the upper and lower signs in (28), respectively.
Hence for open r-chains, we have

H = ∓(
2k

(k2 − 4)1/2
)(

r−1∑
l=1

I ⊗ ... ⊗ I ⊗ (P0)l,l+1 ⊗ I ⊗ ... ⊗ I ). (33)

We define

Xl ≡ I ⊗ ... ⊗ I ⊗ (P0)l,l+1 ⊗ I ⊗ ... ⊗ I. (34)



013517-6 Chakrabarti, Chakraborti, and Guevara Hidalgo J. Math. Phys. 54, 013517 (2013)

Then

H = −(2 coth η)(
r−1∑
l=1

Xl ), (35)

where η is non-zero, and positive or negative according to the sign chosen in (28).
From (19)–(22) with k given by (27),

Xl Xl+1 Xl = k−2 Xl,

X2
l = Xl,

Xl Xm = Xm Xl (|l − m| > 1). (36)

Thus, the chain Hamiltonian is obtained as a sum over generators of the Temperley-Lieb algebra,
defined by (36).

Defining

X ′
l = k Xl = (eη + e−η)X ′

l, (37)

one obtains

X ′
l X ′

l+1 X ′
l = X ′

l,

X ′2
l = (eη + e−η)X ′

l,

X ′
l X ′

m = X ′
m X ′

l (|l − m| > 1), (38)

a standard form of Temperley-Lieb algebra.
We note the following points:

1. As we mentioned before, the link between spin chains and Temperley-Lieb algebras is a well-
studied subject.6 But here we have more than the defining relations (36) or (38). We have,
for all N, explicit N2 × N2 matrix realizations of the generators: (implementing (13)–(18) in
(34) and (37)). This, as will be displayed below, enables one to construct eigenstates and
eigenvalues of chain Hamiltonians for all N.

2. The two signs in (28) will be seen to correspond to inversion of the sign of eigenvalues of H.
They correspond to two different regimes.

V. EIGENSTATES AND EIGENVALUES OF P0 AND ACTION OF H

We start by presenting the action of the projector P0 on product states and then derive that of the
Hamiltonian (33). The definitions (12), (13), and the explicit particular cases of Appendix A imply
that the action of P0 on general mixed states selects out specific linear combinations of states∣∣i i 〉 = |i〉 ⊗ |N − i + 1〉 .

In terms of

P ′
0 = ([N − ε] + ε)P0, (39)

one obtains from (13)–(18), for SÔ(N ):

P ′
0(

N∑
a=1

xa |a〉) ⊗ (
N∑

b=1

yb |b〉) =
N∑

i=1

q (ρi −ρi )xi yi

∣∣i i 〉 , (40)

and for S p̂(N ):

P ′
0(

N∑
a=1

xa |a〉) ⊗ (
N∑

b=1

yb |b〉) =
N∑

i=1

q (ρi −ρi )(εi xi )(εi yi )
∣∣i i 〉 , (41)

with the ε’s defined in (15).
Explicit results of Appendix A can now be implemented as follows.
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A. SÔ(3)

P ′
0(x1 |1〉 + x2 |2〉 + x1

∣∣1〉
)

⊗(y1 |1〉 + y2 |2〉 + y1

∣∣1〉
)

= (q−1/2x1 y1 + x2 y2 + q1/2x1 y1) |�〉 , (42)

where

|�〉 ≡ (q−1/2
∣∣11

〉 + |22〉 + q1/2
∣∣11

〉
). (43)

The states (|1〉 , |2〉 ,
∣∣1〉

) may be taken to correspond to spin projections (1, 0, − 1). This |�〉 turns
out to be an eigenstate of P0 with unity for eigenvalue:

P0 |�〉 = |�〉 (from P ′
0 |�〉 = (q−1 + 1 + q) |�〉 ), (44)

(using (39) with N = 3, ([N − 1] + 1) = (q− 1 + 1 + q) ). From (42)

P ′
0(

∣∣11
〉
, |22〉 ,

∣∣11
〉
) = (q−1/2, 1, q1/2) |�〉 (45)

and

P ′
0 |i j〉 = 0 ( j �= i). (46)

Strictly analogous results hold for all SÔ(N ) and S p̂(N ). This is already pointed out for the cases
of Appendix A.

B. SÔ(4)

P ′
0 = (q−2 + 2 + q2)P0.

Then

P ′
0(x1 |1〉 + x2 |2〉 + x2

∣∣2〉 + x1

∣∣1〉
)

⊗(y1 |1〉 + y2 |2〉 + y2

∣∣2〉 + y1

∣∣1〉
)

= (q−1x1 y1 + x2 y2 + x2 y2 + qx1 y1) |�〉 , (47)

where

|�〉 ≡ q−1
∣∣11

〉 + ∣∣22
〉 + ∣∣22

〉 + q
∣∣11

〉
(48)

and

P0 |�〉 = |�〉 . (49)

As in (45) the non-zero results are obtained for only

P ′
0(

∣∣11
〉
,
∣∣22

〉
,
∣∣22

〉
,
∣∣11

〉
) = (q−1, 1, 1, q) |�〉 . (50)

The states (|1〉 , |2〉 ,
∣∣2〉

,
∣∣1〉

) correspond to spin projections ( 3
2 , 1

2 ,− 1
2 ,− 3

2 ). Our notation here
generalizes smoothly to any N.

C. Sp̂(4)

P ′
0 = (q−4 + q−2 + q2 + q4)P0. (51)
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Then

P ′
0(x1 |1〉 + x2 |2〉 + x2

∣∣2〉 + x1

∣∣1〉
) (52)

⊗(y1 |1〉 + y2 |2〉 + y2

∣∣2〉 + y1

∣∣1〉
)

= (q−2x1 y1 + q−1x2 y2 − qx2 y2 − q2x1 y1) |�〉 ,

where

|�〉 ≡ q−2
∣∣11

〉 + q−1
∣∣22

〉 − q
∣∣22

〉 − q2
∣∣11

〉
(53)

and

P0 |�〉 = |�〉 . (54)

Non-zero actions:

P ′
0(

∣∣11
〉
,
∣∣22

〉
,
∣∣22

〉
,
∣∣11

〉
) = (q−2, q−1,−q,−q2) |�〉 . (55)

Let us now consider the action of H on an open chain of length r.
Similar to (39), P ′

0 = k P0, we now define

X ′
l = k Xl =

r−1∑
l=1

I ⊗ ... ⊗ I ⊗ (P ′
0)l,l+1 ⊗ I ⊗ ... ⊗ I (56)

with (l = 1, ..., r − 1), and

k = ([N ∓ 1] ± 1)

= q (N∓1) − q−(N∓1)

q − q−1
± 1,

for SÔ(N ) and S p̂(N ), respectively, where we consider real values of q.
Using (28), we can now write

H = ∓ 2k√
k2 − 4

r−1∑
l=1

X ′
l = − 1

sinh η

r−1∑
l=1

X ′
l (57)

≡ −(sinh η)−1 H ′. (58)

Now

H ′ |i1i2...ir 〉 =
r−1∑
l=1

|i1i2...il−1〉 ((P ′
0) |il il+1〉) |il+2...ir 〉 (59)

and

P ′
0 |il il+1〉 = δ(i l, il+1)q (ρi −ρi )εiεi

∣∣il il
〉

(60)

with the n-tuples defined by (16)–(18), and with ε’s as indicated by (15) for S p̂(N ) (each ε = 1 for
SÔ(N )).

Let us concentrate on the explicit case of SÔ(3). Consider, for example, the SÔ(3) 4-chain with
mixed product states

|X〉 ≡ (a1 |1〉 + a2 |2〉 + a1

∣∣1〉
)

⊗(b1 |1〉 + b2 |2〉 + b1

∣∣1〉
)

⊗(c1 |1〉 + c2 |2〉 + c1

∣∣1〉
)

⊗(d1 |1〉 + d2 |2〉 + d1

∣∣1〉
)

≡ |x〉1 ⊗ |x〉2 ⊗ |x〉3 ⊗ |x〉4 . (61)
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Defining, as in (43)

|�〉 ≡ q−1/2
∣∣11

〉 + |22〉 + q1/2
∣∣11

〉
, (62)

we now have

H ′
4 |x〉 = (a1b1q−1/2 + a2b2 + a1b1q1/2) |�〉 |x〉3 |x〉4

+(b1c1q−1/2 + b2c2 + b1c1q1/2) |x〉1 |�〉 |x〉4

+(c1d1q−1/2 + c2d2 + c1d1q1/2) |x〉1 |x〉2 |�〉 .

(63)

A generalization to a chain of length r is quite straight forward. In notations that are evident

H ′(|x〉1 ... |x〉r ) =
r−1∑
l=1

fl |x〉1 ... |x〉l−1 |�〉 |x〉l+2 ... |x〉r , (64)

where

fl = (a(l)
1 b(l+1)

1
q−1/2 + a(l)

2 b(l+1)
2 + a(l)

1
b(l+1)

1 q1/2). (65)

For SÔ(4), S p̂(4), and so on, one can easily implement (58) and (59), with previous definitions.

VI. TIME EVOLUTION OF SPIN CHAINS AND DATA TRANSMISSION

A. Evolution in time

We are now in a position to start studying the evolution in time t of a chain under the action of
the operator e− iHt. As is often the case, we try to display some basic features by presenting results
explicitly for a few restricted simple cases and indicating how to generalize them.

Consider an SÔ(3) chain of spins, the projections for spin 1 being denoted as

(|+〉 , |0〉 , |−〉) ≡ (|1〉 , |0〉 ,
∣∣1〉

). (66)

From (42)–(46) one sees then the iterative actions of H on the building blocks

|�〉 |i〉 , |i〉 |�〉 , |i〉 |�〉 | j〉 ,

where

|�〉 = q−1/2
∣∣11

〉 + |22〉 + q1/2
∣∣11

〉
(67)

and (i, j) take the values (1, 0, 1), are the essential ingredients, along with the basic initial results:

P ′
0(

∣∣11
〉
, |22〉 ,

∣∣11
〉
) = (q−1 + 1 + q)P0(

∣∣11
〉
, |22〉 ,

∣∣11
〉
)

= (q−1/2, 1, q1/2)(q−1/2
∣∣11

〉

+ |22〉 + q1/2
∣∣11

〉
)

≡ (q−1/2, 1, q1/2) |�〉 ,

P ′
0 |i j〉 = 0 ( j �= i),

and

k P0 |�〉 ≡ P ′
0 |�〉 = (q−1 + 1 + q) |�〉 ≡ k |�〉 . (68)
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From (28), (32)–(35), and (68), for an open r-chain

H = λ

r−1∑
l=1

I ⊗ ... ⊗ I ⊗ (P ′
0)l,l+1 ⊗ I ⊗ ... ⊗ I, (69)

where (corresponding to the sign of η chosen in (28))

λ ≡ ∓ 2√
k2 − 4

, (70)

which (from (68)) is real for q real, positive (which we assume to be the case). Note that for a closed
chain the summation (69) would include an extra term l = r with (r + 1) ≈ 1.

Defining

H ≡ λH ′, (71)

we consider the series expansion (with I ⊗ I = I9 for SÔ(3)):

e−i Ht = e−iλt H ′

= I9 + (−iλt)H ′ + 1

2!
(−iλt)2(H ′)2 (72)

+ 1

3!
(−iλt)3(H ′)3 + ...

up to any chosen order in t.
Suppose that the spin states

|�〉 |i〉 , |i〉 |�〉 , |i〉 |�〉 | j〉
correspond, respectively, to the sites

(l, l + 1, l + 2), (l − 1, l, l + 1), (l − 1, l, l + 1, l + 2).

Defining

H ′
(3) = P ′

0 ⊗ I + I ⊗ P ′
0,

H ′
(4) = P ′

0 ⊗ I ⊗ I + I ⊗ P ′
0 ⊗ I + I ⊗ I ⊗ P ′

0,

they will always be implicitly assumed to correspond to the appropriate sites as the relevant parts of
the total H′ acting on the total chain. Thus, H ′

(3) |�〉 |i〉 corresponds to the terms of H′ acting on the
sites (l, l + 1, l + 2) and so on.

One obtains from (42)–(46),

H ′
(3) |�〉 |i〉 = k |�〉 |i〉 + |i〉 |�〉 , (73)

H ′
(3) |i〉 |�〉 = k |i〉 |�〉 + |�〉 |i〉 . (74)

Iterating, one obtains (see Appendix B)

(H ′
(3))

p(|�〉 |i〉) = Ap |�〉 |i〉 + Bp |i〉 |�〉 , (75)

(H ′
(3))

p |i〉 |�〉 = Ap |i〉 |�〉 + Bp |�〉 |i〉 , (76)

where

Ap = 1

2
((k + 1)p + (k − 1)p), (77)

Bp = 1

2
((k + 1)p − (k − 1)p). (78)
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Next assuming j �= i , we have

H ′
(4)(|i〉 |�〉 | j〉) = |�〉 |i j〉 + k |i〉 |�〉 | j〉 + |i j〉 |�〉 (79)

or

(H ′
(4) − k)(|i〉 |�〉 | j〉) = |i j〉 |�〉 + |�〉 |i j〉 . (80)

Now, from (73), (74), and (80)

(H ′
(4) − k)2(|i〉 |�〉 | j〉) = 2 |i〉 |�〉 | j〉 (81)

since P ′
0 |i j〉 = 0, ( j �= i) . Hence

(H ′
(4) − k)2n(|i〉 |�〉 | j〉) = 2(n−1)(|i〉 |�〉 | j〉), (82)

(H ′
(4) − k)2n+1(|i〉 |�〉 | j〉) = 2(n−1)(|i j〉 |�〉 + |�〉 |i j〉 . (83)

For | j〉 = ∣∣i 〉 there are additional terms. One obtains

H ′
(4)(|i〉 |�〉 ∣∣i 〉) = |�〉 ∣∣i i 〉 + k |i〉 |�〉 ∣∣i 〉 + ∣∣i i 〉 |�〉 , (84)

H ′
(4)(|�〉 ∣∣i i 〉) = k |�〉 ∣∣i i 〉 + |i〉 |�〉 ∣∣i 〉 + qδi |�〉 |�〉 , (85)

H ′
(4)(

∣∣i i 〉 |�〉) = k
∣∣i i 〉 |�〉 + |i〉 |�〉 ∣∣i 〉 + qδi |�〉 |�〉 , (86)

where δi = (− 1
2 , 0, 1

2 ), respectively, for

i = (1, 2, 1). (87)

Hence,

(H ′
(4))

2(|i〉 |�〉 ∣∣i 〉) = (k2 + 2) |i〉 |�〉 ∣∣i 〉

+2k(|�〉 ∣∣i i 〉 + ∣∣i i 〉 |�〉)
+2qδi |�〉 |�〉 (88)

and again

H ′
(4)(|�〉 |�〉) = 2k |�〉 |�〉 +

∑
i

qδi |i〉 |�〉 ∣∣i 〉

= 2k |�〉 |�〉 + (q−1/2 |1〉 |�〉 ∣∣1〉

+ |2〉 |�〉 |2〉 + q1/2
∣∣1〉 |�〉 |1〉). (89)

Using the set (84)–(89) one can now iterate. The way to proceed and the essential ingredients
have been all presented above. We will not write down the general result for (H ′

(4))
n(|i〉 |�〉 ∣∣i 〉). In

all the examples above there is one feature in common: The eigenstates |�〉 of P ′
0 appear under the

action of H′ and move along the chain under iterations. They move both forward and backward.
There can be multiple |�〉 depending on the initial state. The iterations above are to be implemented
in (72). Using systematically the results above one can start to study the evolution of an initial chain
configuration.
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B. Transmission of data along a chain

For clarity and relative simplicity we start with an open 6-chain of SÔ(3) spin states (66). The
initial configuration is assumed to be (at t = 0)

|X〉(0) = (c1

∣∣11
〉 + c2

∣∣11
〉
) |1111〉 (90)

≡ c1 |X〉1 + c2 |X〉2 . (91)

(We do not immediately normalize |X〉 for convenient generalization to more parameters, such as,
that to start with (99), considered later.) As will be shown below, time evolution under the action of
e− iHt will generate (at time t) a mutually orthogonal set of states including

|1111〉 (d1

∣∣11
〉 + d2

∣∣11
〉
). (92)

The other states at a finite non-zero t will be (apart from (90)) sequences

(|X〉1 , |X〉2 , |�〉 |1111〉 , |1〉 |�〉 |111〉 ,

|11〉 |�〉 |11〉 ,
∣∣111111

〉
, |111221〉 , |111122〉), (93)

whose coefficients can be obtained (see Appendix C).
With t increasing, the coefficients of the above set, (i.e., (92) and (93)) will continue to change.

Otherwise, the set will be stable, no new basis states of the 6-chain will appear. This is a consequence
of the specific properties of our H. It will be shown that it is sufficient to implement the series
development

e−i Ht = e−i(λt)H ′

= I9 − i(λt)H ′ − 1

2!
(λt)2(H ′)2 + i

3!
(λt)3(H ′)3

+ 1

4!
(λt)4(H ′)4 − i

5!
(λt)5(H ′)5 + O(t6). (94)

Evaluating finally,

(H ′)p(c1 |X〉1 + c2 |X〉2)

for p = (0, 1, 2, 3, 4, 5) one already obtains states of the type (92) (along with others orthogonal to
it as given in (93)). Moreover, (d1, d2) is obtained explicitly in terms of (c1, c2, λ, t) where t is given
(for any chosen origin) and from (70) (restricting the values of q for definiteness, to q = 1 + δ,
δ > 0)

λ = ∓ 2√
(3)2 − 4

= ∓ 2√
5

(95)

for SÔ(3) (i.e., for k = 3). The sign ambiguity in (70) corresponds to the two possible determinations
of η (as explained in (28)) corresponding to two possible regimes.

Next, one can easily invert the relations and thus extract (c1, c2) from (d1, d2, λ, t). Thus, the
initial mixed state at the left of the chain can be extracted by precise observation of the specific
mixed state (92) at the right end of the chain at a finite time t.

In this precise sense, we say that the initial state (c1

∣∣11
〉 + c2

∣∣11
〉
) at the left has been transmitted

to the right as (d1

∣∣11
〉 + d2

∣∣11
〉
) where (c1, c2) can be recovered from (d1, d2).

From the results of Appendix C one obtains

d1 = c1x1 + c2x2, (96)

d2 = c1 y1 + c2 y2, (97)

where (x1, y1), (x2, y2) are given in the appendix. From (C19) and (C21) one sees (since λ and k are
known) that the coefficient of (t3) in x2 gives directly c2 from d1. One then easily extracts c1 also
from the coefficients of powers of t in (d1, d2). Thus, our goal is attained.
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Apart from the development (72) in powers of t, we can also set

q = 1 + δ (98)

and assuming δ to be small, use a series development in powers of δ to extract information more
readily concerning the initial state from that at time t. Let us illustrate this, very briefly, using a
simple example.

Generalizing (90) to

|x〉(0) = (a
∣∣11

〉 + b |22〉 + c
∣∣11

〉
) |1111〉 , (99)

H ′ |x〉(0) = (q−1/2a + b + q1/2c) |�〉 |1111〉
+cq1/2 |1〉 |�〉 |111〉 (100)

= ((a + c) − 1

2
δ(a − c) + b) |�〉 |1111〉

+c(1 + 1

2
δ) |1〉 |�〉 |111〉 + O(δ2). (101)

Thus, in the corresponding generalizations of (96) and (97) one can separate (a + c) and (a − c)
and hence (a, c) by extracting coefficients of powers of δ.

This can be more helpful for more elaborate initial states. A smaller number of powers of t will
be needed to extract the initial parameters from the generalizations of (d1, d2) above.

The special significance of the point q = 1 will be emphasized at the end of Sec. VII in the
context of entanglement entropy. Here we note that a supplementary series development about
q = 1 can help in another context. The dependence of our model on the quantum deformation
parameter q is indeed a central feature.

One may compare our results above with the study of “Quantum communication through an
unmodulated spin chain” in Ref. 7. There one has only Pauli matrices and only two possible spin
states. But the Hamiltonian couples all possible pair of sites and static magnetic fields are present.
The action of e− iHt is studied numerically. The specific structure of our Hamiltonian (not only as
here, for N = 3 but also for N > 3 through straightforward generalization) make explicit computations
feasible.

To illustrate the above statements we consider, for SÔ(3), a particularly simple initial configu-
ration.

Suppose the chain C is given symbolically (with, 1, 2, 1, corresponding to spin projections
( + 1, 0, − 1), respectively) by

C0 = (...1111(p)1(p+1)111...) (102)

with all sites up to, say p in state 1 and then all sites in state 1.

Gathering together the definitions and notations (56)–(59) in the compact notation

(−i Ht) = ζ [(P0(12) ⊗ I ⊗ I ⊗ ...) + (I ⊗ P0(23) ⊗ I ⊗ ...)

+(I ⊗ I ⊗ P0(34) ⊗ ...) + ...] (103)

≡
∑
p=0

ζ (Hp,p+1). (104)

To start with, only Hp, p + 1 will have a non-zero action on C.

HC0 = ...111(�p,p+1)111..., (105)

where �p, p + 1 (given by (43)) is

(q−1/2
∣∣11

〉 + |22〉 + q1/2
∣∣11

〉
). (106)
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In the action of e− iHt, the � states then spread out as follows:

(−i Ht)2 :

H�p,p+1 → (�p−1,p, �p,p+1, �p+1,p+2), (107)

(−i Ht)3 :

H�p,p → (�p−2,p−1, �p−1,p, �p,p+1),

H�p,p+1 → (�p−1,p, �p,p+1, �p+1,p+2),

H�p+1,p+2 → (�p,p+1, �p+1,p+2, �p+2,p+3). (108)

One already sees, schematically, how the � states are generated, move forward and backward,
crossover and acquire coefficients corresponding to different terms

1

n!
(−i Ht)n (n = 1, 2, 3).

Already the multiplicities counting the contributions from different n’s (with appropriate coefficients
for each order) are for

(�p−2,p−1, �p−1,p, �p,p+1, �p+1,p+2, �p+2,p+3)

→ (1, 3, 5, 3, 1). (109)

After r steps (i.e., up to order tr), the above sequence is

(..., 2r − 5, 2r − 3, 2r − 1, 2r − 3, 2r − 5, ...).

An initial state less simple can give a much more complex pattern. For initial C

C+− : (11111...111),

C−+ : (11111...111),

C00 : (22222...222),

even the term ( − iHt) in the expansion of e− iHt generates � states for each pair of sites (p, p + 1).
These states � are the basic building blocks of our formalism. They will be seen to be entangled

states, and their (q, N)-dependent entropy will be studied in Sec. VII.

VII. (q, N)-DEPENDENT ENTANGLEMENT ENTROPY OF EIGENSTATES OF P0

Acting on the pure product states
∣∣i i 〉, (i = N − i + 1) for both SÔ(N ) and S p̂(N ) the projector

P0 creates its eigenstate

P0

∣∣i i 〉 =
N∑

j=1

((P0)( j i),( j i))
∣∣ j j

〉 ≈ |�〉 , (110)

the matrix elements of P0 in (110), being defined as in (12)–(18).
Does P0 thus generate entanglement? We give an affirmative answer below, evaluate the entan-

glement entropy to quantify it and analyze the (q, N)-dependence, q being the parameter of quantum
deformation. We formulate the q-dependence, separately for different values of N.
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A. SÔ(3)

As usual, we start with SÔ(3) (see (42)–(46)) and (A1)–(A4)) and as essential step, normalize
|�〉 as below, denoting it now by |�〉(n). Define

|�〉(n) = (q−1 + 1 + q)−1/2(q−1/2 |+−〉 + |00〉 + q1/2 |−+〉)

≡ (q−1 + 1 + q)−1/2(q−1/2
∣∣11

〉 + |22〉 + q1/2
∣∣11

〉
). (111)

That this is an entanglement state, is evident immediately. Attempting to re-express it as a product
state

(c+ |+〉 + c0 |0〉 + c− |−〉)(d+ |+〉 + d0 |0〉 + d− |−〉)
one runs directly into contradictory constraints on (ci, dj) coefficients.

To quantify the entanglement one first notes that the eigenstate |�〉(n) satisfying

P0 |�〉(n) = |�〉(n) (112)

is already Schmidt decomposed as

|�〉(n) =
∑

i

aii

∣∣i i 〉 . (113)

Hence, without passing via the density matrix (and without using a log 2 basis) one obtains the
von-Neumann entropy16, 17 as

S = −
∑

i

|aii |2 ln |aii |2, i = (+, 0,−). (114)

From (111), (113), and (114), one obtains

S(q) = S(q−1) (115)

= ln(q−1 + 1 + q) − (q − q−1)

(q−1 + 1 + q)
ln q.

From q = 1 one obtains the maximum entropy as

S(1) = S(max) = ln 3. (116)

To first order in ε > 0,

S(1 ∓ ε) = ln 3 ± 2

3
ε ln(1 ∓ ε) < S(1). (117)

Consistently with (115) (namely, S(q) = S(q− 1))

S(q) → 0 as q → ∞ or q → 0. (118)

After displaying the q-dependence for N = 3 we explore below also the N-dependence. As a first
step we move up from N = 3 to N = 4.

B. SÔ(4)

From (47)–(50) and (A6)–(A8) we define now the normalized eigenstate of P0 as

|�〉(n) = (q−2 + 2 + q2)−1/2(q−1
∣∣11

〉 + ∣∣22
〉 + ∣∣22

〉 + q
∣∣11

〉
). (119)

The corresponding entropy is obtained as

S(q) = S(q−1) = 2 ln(q−1 + q) − 2
(q − q−1)

(q + q−1)
ln q. (120)
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Now, again for q = 1,

S(max) = S(1) = ln 4, (121)

S(1 ∓ ε) = ln 4 ± 4ε ln(1 ∓ ε) < S(1). (122)

Once again (118)

S(q) → 0 as q → ∞ or q → 0. (123)

Hence as N increases from 3 to 4, S(max ) moves up from ln 3 to ln 4 and falls a bit more steeply,
but again symmetrically in (q, q− 1) to vanishing asymptotic values as q → ∞ and q → 0.

C. Sp̂(4)

For N = (4, 6, 8, ...), i.e., for each such even N, one has the projector P0 for S p̂(N ) as well as
for SÔ(N ). Though this paper is mostly devoted to a detailed study of SÔ(3), after showing how
the entropy depends on N for SÔ(N ) by presenting the results for SÔ(4), we also present briefly
the results for S p̂(4) to display both the analogies and the differences in this respect between SÔ(4)
and S p̂(4). The relevant generalization for N = (6, 8, ...) is straight forward.

For S p̂(4), starting with (51)–(54) and (A9)–(A11) one obtains (as compared to (119))

|�〉(n) = (q−4 + q−2 + q2 + q4)−1/2(q−2
∣∣11

〉

+q−1
∣∣22

〉 − q
∣∣22

〉 − q2
∣∣11

〉
), (124)

the corresponding entanglement entropy is

S(q) = S(q−1) = ln(q−4 + q−2 + q2 + q4)

−4q4 + 2q2 − 2q−2 − 4q−4

q−4 + q−2 + q2 + q4
ln q. (125)

Thus again, as for SÔ(4),

S(1) = S(max) = ln 4, (126)

S(1 ∓ ε) = ln 4 ± 10ε ln(1 ∓ ε), (127)

S(q) → 0 as q → ∞ or q → 0. (128)

The slope, starting from S(1) towards the asymptotic zero values is steeper as compared to the SÔ(4)
case, as shown in Fig. 1.

One can show (starting with P0 defined in (13) and (14)) that for each N,

S(q, N ) = S(q−1, N ),

Smax(q, N ) = S(1, N ) = ln N ,

S(q, N ) → 0 as q → ∞ or q → 0. (129)

We do not present the explicit (straight forward) computations for general cases. But one aspect is
worth pointing out.

We emphasized in related previous papers5, 15 that for our special solutions (SÔ(N ), S p̂(N ))
the projector P0 and the braid matrix R̂ remain non-trivial for q = 1. This is a remarkable feature
(absent in standard solutions for SU(N)q, SO(N)q, Sp(N)q) as was emphasized in Section 3 of Ref. 5
and Section 2 of Ref. 15.
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FIG. 1. (q, N)-dependent entanglement entropy.

Now we have found that not only SÔ(N ), S p̂(N ) remain non-trivial for q = 1, the associated
entanglement entropy (for eigenstates of P0) is maximal (ln N) for q = 1. Thus, the striking non-
triviality at q = 1 acquires further significance.

An adequate study of correlations in presence of multiple states |�〉 (as already starting to
appear in (88)) will not be undertaken in this paper. This aspect remains to be explored.

We have shown above that the operators P0, acting on any |ij〉 either annihilates it (for j �= i) or
generates (for j = i) entangled states |�〉 and we have quantified the corresponding entanglement
for all (q, N) by computing the entanglement entropy.

VIII. CONCLUSIONS AND PERSPECTIVES

Starting with the projectors (P+ , P− , P0) for SOq(N) and Spq(N) braid matrices and then
keeping only P0 it was shown how P0 can generate a Temperley-Lieb algebra and how this property
leads to a remarkable special class of braid matrices (denoted as SÔq (N ), S p̂q (N )) and related spin
chains.

Then we have explored certain aspects of such spin chains, using mostly SÔq (3) examples of
chains with free ends to display some particularly interesting properties.

Time evolution of such chains was studied by evaluating the actions of successive terms
( − iHt)p in the series development of e− iHt, H being the spin chain Hamiltonian. In particular,
we studied in what form the data encoded in parameters of mixed states at one end of the chain can
be decoded by observing mixed states reaching (as t increases) the other end of the chain. Most of
the relevant computations has been collected together in Appendices A–C.

Finally, we have obtained the entanglement entropies S(q, N) of the eigenstates of P0. In
particular we obtained (q, N)-dependence as

S(q, N ) = S(q−1, N ), (130)

Smax(q, N ) = S(1, N ) = ln N , (131)

S(q, N ) → 0 as q → ∞ or q → 0. (132)

We pointed out before in Sec. IV that the two possible sign determinations of the essential parameter
η correspond to two different regimes for the energy eigenvalues of the chain Hamiltonian. One may
compare and contrast such a feature with the well-known corresponding ones of the 6-vertex models
(see, for example, Ref. 18).

Certain aspects of our classes of spin chains remain to be studied, as pointed out in Sec. IV.
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Another rich perspective is the exploration of various aspects of the braid matrices we started
with (Secs. II and III) before extracting from them the chain Hamiltonian (Sec. IV).

In previous papers13, 19 we studied parametrized entanglements generated by braid operators
rendered unitary by implementing imaginary rapidities (iθ , iθ ′) in R̂ matrices of (5). Here again
(from (8) and (9))

R̂(iθ ) = P+ + P− + f0 (−iθ )

f0 (iθ )
P0

= I ⊗ I + ω (iθ ) P0 (133)

can be directly verified to satisfy unitarity, i.e.,

(R̂q (iθ )† R̂q (iθ )) = IN ⊗ IN . (134)

Now one can try to formulate explicitly (q, N)-parametrized entanglement quantifiers of the super-
positions of 3-qubit states generated by the action of the braid operator (see (5) and (6)) on such
product states, as on the l.h.s. of (40) and (41) generalized to triple products. One can also examine
possible teleportation protocols associated to our class of unitary matrices (see Ref. 2).

APPENDIX A: EXPLICIT P0 (N = 3, 4)

Many basic results of Sec. V can be read off easily from the matrices P0 presented below. The
matrices (ij) are defined above (12) as are (i j). The projectors P0 are defined by (12)–(18). Their
contents for the simplest cases are displayed below.

(i) SÔ(3): (N = 3; 1 = 3, 2 = 2)

(q−1 + 1 + q)P0 ≡ P ′
0

= q−1(11) ⊗ (11)

+q−1/2(12) ⊗ (12) + (11) ⊗ (11)

+q−1/2(21) ⊗ (21) + (22) ⊗ (22)

+q1/2(21) ⊗ (21) + (11) ⊗ (11)

+q1/2(12) ⊗ (12) + q(11) ⊗ (11), (A1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 q−1 0 q−1/2 0 1 0 0

0 0 0 0 0 0 0 0 0

0 0 q−1/2 0 1 0 q1/2 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 q1/2 0 q 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A2)

Defining the base states

|i j〉 ≡ |i〉 ⊗ | j〉 ,

the single eigenstate of P0 with non-zero eigenvalue is

|�〉 ≡ q−1/2
∣∣11

〉 + |22〉 + q1/2
∣∣11

〉
, (A3)

P0 |�〉 = |�〉 . (A4)
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All 6 states |ij〉 with j �= i are annihilated by P0. Also,

P0(q1/2
∣∣11

〉 − |22〉) = P0(|22〉 − q−1/2
∣∣11

〉
) = 0. (A5)

Corresponding patterns arise for all N. They will not be explored in any detail.
We present briefly the cases N = 4.
(ii) SÔ(4): (1 = 4, 2 = 3)

(q−2 + 2 + q2)P0 ≡ P ′
0

= q−2(11) ⊗ (11) + q−1(12) ⊗ (12)

+q−1(12) ⊗ (12) + (11) ⊗ (11)

+q−1(21) ⊗ (21) + (22) ⊗ (22)

+(22) ⊗ (22) + q(21) ⊗ (21)

+q−1(21) ⊗ (21) + (22) ⊗ (22)

+(22) ⊗ (22) + q(21) ⊗ (21)

+(11) ⊗ (11) + q(12) ⊗ (12)

+q(12) ⊗ (12) + q2(11) ⊗ (11). (A6)

Defining

|�〉 ≡ q−1
∣∣11

〉 + ∣∣22
〉 + ∣∣22

〉 + q
∣∣11

〉
, (A7)

P0 |�〉 = |�〉 . (A8)

(iii) S p̂(4): (1 = 4, 2 = 3)

(q−4 + q−2 + q2 + q4)P0 ≡ P ′
0

= q−4(11) ⊗ (11) + q−3(12) ⊗ (12)

−q−1(12) ⊗ (12) − (11) ⊗ (11)

+q−3(21) ⊗ (21) + q−2(22) ⊗ (22)

−(22) ⊗ (22) − q(21) ⊗ (21)

−q−1(21) ⊗ (21) − (22) ⊗ (22)

+q2(22) ⊗ (22) + q3(21) ⊗ (21)

−(11) ⊗ (11) − q(12) ⊗ (12)

+q3(12) ⊗ (12) + q4(11) ⊗ (11). (A9)

Defining

|�〉 ≡ q−2
∣∣11

〉 + q−1
∣∣22

〉 − q
∣∣22

〉 − q2
∣∣11

〉
, (A10)

P0 |�〉 = |�〉 . (A11)

For S p̂(N ) the blocks with negative signs are anti-diagonally aligned.
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APPENDIX B: ITERATIVE ACTION OF H

As explained in Sec. VI, in studying SÔ(3) chains, it is useful to have ready results for

H m
(3)(|�〉 |i〉 , |i〉 |�〉)

and

H m
(4)(|i〉 |�〉 | j〉).

Here we collect the results indicating the derivations. We consider below H ′
(3), H ′

(4) as defined
below (72) in “notation.” Necessary multiplicative factors can be easily supplied. We start with
results (73) and (74). Using them one obtains

H ′
(3)(|�〉 |i〉) ≡ (P ′

0 ⊗ I + I ⊗ P ′
0)(|�〉 |i〉)

= k |�〉 |i〉 + |i〉 |�〉 , (B1)

where k = (q− 1 + 1 + q), i = (1, 2, 1) also

H ′
(3)(|i〉 |�〉) = k |i〉 |�〉 + |�〉 |i〉 . (B2)

Iterating

(H ′
(3))

p(|�〉 |i〉) = Ap |�〉 |i〉 + Bp |i〉 |�〉 , (B3)

(H ′
(3))

p(|i〉 |�〉) = Ap |i〉 |�〉 + Bp |�〉 |i〉 , (B4)

where

Ap = 1

2
((k + 1)p + (k − 1)p), (B5)

Bp = 1

2
((k + 1)p − (k − 1)p). (B6)

Now

H ′
(4)(|i〉 |�〉 | j〉) ≡ (P ′

0 ⊗ I ⊗ I + I ⊗ P ′
0 ⊗ I (B7)

+I ⊗ I ⊗ P ′
0)(|i〉 |�〉 | j〉)

= |i〉 | j〉 |�〉 + |�〉 |i〉 | j〉 (B8)

+k |i〉 |�〉 | j〉
or

(H ′
(4) − k)(|i〉 |�〉 | j〉) = |i〉 | j〉 |�〉 + |�〉 |i〉 | j〉 . (B9)

For j �= i (when i �= j), P ′
0 |i j〉 = 0 and from (B1), (B2), and (B9)

(H ′
(4) − k)2(|i〉 |�〉 | j〉) = 2 |i〉 |�〉 | j〉 . (B10)

Thus,

(H ′
(4) − k)2n(|i〉 |�〉 | j〉) = 2n−1 |i〉 |�〉 | j〉 , (B11)

(H ′
(4) − k)2n+1(|i〉 |�〉 | j〉) = 2n−1(H ′

(4) − k) |i〉 |�〉 | j〉
= 2n−1(|i〉 | j〉 |�〉 + |�〉 |i〉 | j〉).

These results can be implemented directly by writing

e−i Ht = e−ikt e−i(H−k)t ,
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and using the series development of the last factor. For j = i there are extra terms as follows:

(H ′
(4) − k)(|i〉 |�〉 ∣∣i 〉) = ∣∣i i 〉 |�〉 + |�〉 ∣∣i i 〉 . (B12)

Hence

(H ′
(4) − k)2(|i〉 |�〉 ∣∣i 〉) = 2 |i〉 |�〉 ∣∣i 〉 + 2 |�〉 |�〉 . (B13)

But now

H ′
(4) |�〉 |�〉 = 2 |�〉 |�〉 + (I ⊗ P ′

0 ⊗ I ) |�〉 |�〉
= 2 |�〉 |�〉 + (q−1/2 |1〉 |�〉 ∣∣1〉

+ |2〉 |�〉 |2〉 + q1/2
∣∣1〉 |�〉 |1〉), (B14)

H ′
(4)(q

−1/2 |1〉 |�〉 ∣∣1〉 + |2〉 |�〉 |2〉 + q1/2
∣∣1〉 |�〉 |1〉)

= 2 |�〉 |�〉 + k(q−1/2 |1〉 |�〉 ∣∣1〉

+ |2〉 |�〉 |2〉 + q1/2
∣∣1〉 |�〉 |1〉). (B15)

Combining (B14) and (B15) one can now iterate.

APPENDIX C: EXPLICIT RESULTS FOR A 6-CHAIN

We present below the iterated action of H′ (up to fifth order, namely, (H′)5) on the free 6-chain
states (for our SÔ(3) case)

|x〉1 ≡ ∣∣111111
〉
, (C1)

|x〉2 ≡ ∣∣111111
〉
. (C2)

They will be implemented in Sec. VI to study, explicitly for a simple case, the time evolution of our
class of spin chains and possible data transmission with such evolutions.

Here the relevant H′ is (with P ′
0 defined in Sec. V)

H ′
(6) =

5∑
l=1

I ⊗ I ⊗ ... ⊗ (P ′
0)l,l+1 ⊗ ... ⊗ I. (C3)

The actions of P ′
0 on SÔ(3) states are defined in Sec. V and iterative actions are presented, for H′

acting on SÔ(3) states in Sec. VI. For the restricted case relevant here only one needs, for sub-chains
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of H ′
(6) above

H ′
(3) ≡ P ′

0 ⊗ I + I ⊗ P ′
0, (C4)

H(4) ≡ P ′
0 ⊗ I ⊗ I + I ⊗ P ′

0 ⊗ I + I ⊗ I ⊗ P ′
0, (C5)

acting, respectively, on

H ′
(3)(|�〉 |1〉 , |1〉 |�〉) (C6)

= ((k |�〉 |1〉 + |1〉 |�〉), (|�〉 |1〉 + k |1〉 |�〉)),
H ′

(4)(|1〉 |�〉 |1〉) = |�〉 |11〉 + k |1〉 |�〉 |1〉 + |11〉 |�〉 . (C7)

Here we have used the basic definitions and results (42)–(46).
Using all these results systematically one obtains the following results in a straightforward

fashion, arranging terms in the order shown below:

H ′ |x〉1 = q1/2 |�〉 |1111〉 , (C8)

H ′ |x〉2 = q−1 H ′ |x〉1 + q1/2 |1〉 |�〉 |111〉 , (C9)

where |�〉 = q−1/2
∣∣11

〉 + |22〉 + q1/2
∣∣11

〉
.

(H ′)2 |x〉1 = q1/2(k |�〉 |1111〉 + |1〉 |�〉 |111〉), (C10)

(H ′)2 |x〉2 = q−1(H ′)2 |x〉1 + q1/2(|�〉 |1111〉 (C11)

+k |1〉 |�〉 |111〉 + |11〉 |�〉 |11〉),
where k = (q− 1 + 1 + q).

(H ′)3 |x〉1 = q1/2((k2 + 1) |�〉 |1111〉 (C12)

+2k |1〉 |�〉 |111〉 + |11〉 |�〉 |11〉),
(H ′)3 |x〉2 = q−1(H ′)3 |x〉1 + q1/2(2k |�〉 |1111〉

+(k2 + 2) |1〉 |�〉 |111〉 + 2k |11〉 |�〉 |11〉
+ |111〉 |�〉 |1〉). (C13)

(H ′)4 |x〉1 = q1/2((k3 + 3k) |�〉 |1111〉 (C14)

+(3k2 + 2) |1〉 |�〉 |111〉
+3k |11〉 |�〉 |11〉 + |111〉 |�〉 |1〉),

(H ′)4 |x〉2 = q−1(H ′)4 |x〉1 (C15)

+q1/2((3k2 + 2) |�〉 |1111〉
+(k3 + 6k) |1〉 |�〉 |111〉
+(3k2 + 3) |11〉 |�〉 |11〉
+4k |111〉 |�〉 |1〉 + |1111〉 |�〉).
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(H ′)5 |x〉1 = q1/2((k4 + 6k2 + 2) |�〉 |1111〉 (C16)

+(4k3 + 8k) |1〉 |�〉 |111〉
+(6k2 + 3) |11〉 |�〉 |11〉
+4k |111〉 |�〉 |1〉 + |1111〉 |�〉),

(H ′)5 |x〉2 = q−1(H ′)5 |x〉1 (C17)

+q1/2((4k3 + 8k) |�〉 |1111〉
+(k4 + 12k2 + 5) |1〉 |�〉 |111〉
+(4k3 + 13k) |11〉 |�〉 |11〉
+(7k2 + 4) |111〉 |�〉 |1〉 + 5k |1111〉 |�〉).

From the preceding results the coefficients (up to O(t5)) of the states |1111〉 (
∣∣11

〉
, |22〉 ,

∣∣11
〉
) are

obtained as given below:

e−iλt H ′ |X〉1 = ... + |1111〉 (x1

∣∣11
〉

(C18)

+y1

∣∣11
〉 + z1 |22〉),

e−iλt H ′ |X〉2 = ... + |1111〉 (x2

∣∣11
〉

(C19)

+y2

∣∣11
〉 + z2 |22〉),

and

x1 = 1

4!
(λt)4 − i

5!
(λt)5(4k + q) + O(t6), (C20)

y1 = − i

5!
(λt)5 + O(t6),

z1 = − i

5!
(λt)5q−1/2 + O(t6),

x2 = 1

3!
(λt)3 + 1

4!
(λt)4(4k + q + q−1) (C21)

− i

5!
(λt)5(7k2 + k(5q + 4q−1) + 5) + O(t6),

y2 = 1

4!
(λt)4 − i

5!
(λt)5(5k + q−1) + O(t6),

z2 = − i

5!
(λt)5q1/2(5k + q−2) + O(t6).
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