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We review ideas on temporal dependencies and recurrences in discrete time series from several areas of natural
and social sciences. We revisit existing studies and redefine the relevant observables in the language of copulas
(joint laws of the ranks). We propose that copulas provide an appropriate mathematical framework to study
nonlinear time dependencies and related concepts—like aftershocks, Omori law, recurrences, and waiting times.
We also critically argue, using this global approach, that previous phenomenological attempts involving only a
long-ranged autocorrelation function lacked complexity in that they were essentially monoscale.
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I. INTRODUCTION

A thorough understanding of the occurrences and statistics
of extreme events is crucial in fields like seismicity, finance,
astronomy, physiology, and so on [1,2]. The analyses of
extreme events plays a pivotal role every time an addressed
problem has a stochastic nature, since the rare extreme events
can have rather strong or drastic consequences. One theoretical
motivation for studying extreme events in a particular field like
finance is to account for the observed fat tails of log-returns
(deviation from the normal distribution in the tails) of stock
prices [3]. A more practical motivation is that the extreme
events such as “market crashes” or “shocks” pose a substantial
risk for investors, even though these events are rare and do
not provide enough data for reliable statistical analyses [4]. It
has been observed that common financial shocks are relatively
smaller in magnitude, duration, and number of stocks affected.
However, the extremely large and infrequent financial crashes,
such as the Black Monday crash, have significant “aftershocks”
that can last for many months. This observation is very similar
to the “dynamic relaxation” of the aftershock cascade follow-
ing an earthquake. Hence, it is meaningful to also ask the gen-
eral scientific question: How is the dynamics of a “complex”
system, such as an earthquake fault [5–12] or a financial market
[13–17], affected when the system undergoes an extreme
event? The statistics of return intervals between extreme events
is a powerful tool to characterize the temporal scaling proper-
ties of the observed time series and to estimate the risk for such
hazardous events like earthquakes or financial crashes. Evalu-
ating the return time statistics of extreme events in a stochastic
process is one of the classical problems in probability theory.

Earlier, from an analysis of the probability density functions
(PDF) of waiting times for earthquakes, Bak et al. [5] had sug-
gested a unified scaling law combining the Gutenberg-Richter
law, the Omori law, and the fractal distribution law in a single
framework. This global approach was later extended by Corral
[18,19], who proposed the existence of a universal scaling law
for the PDF of recurrence times between earthquakes in a given
region. This is useful because, due to the scaling properties, it is

*remy.chicheportiche@graduates.centraliens.net
†Present address: School of Computational and Integrative Sci-

ences, Jawaharlal Nehru University, New Delhi - 110067, India;
anirban.chakraborti@ecp.fr

possible to analyze the statistics of return intervals for different
thresholds by studying only the behavior of small fluctuations
occurring very frequently, which have much better statistics
and reliability than those of the rare extreme large fluctuations.
It also reveals a spatiotemporal organization of the seismicity,
as suggested by Saichev and Sornette [10].

In this paper, we review the ideas on temporal dependencies
and recurrences in discrete time series common to several
areas of natural sciences (earthquakes, etc.) and social sciences
(financial markets). We revisit the existing studies, cited above,
and redefine the relevant observables in the mathematical
language of “copulas.” We propose that copulas is a very
general and appropriate framework to study nonlinear time
dependencies and related concepts—like aftershocks, Omori
law, recurrences, and waiting times. Our overall aim is to study
several properties of recurrence times and the statistic of other
observables (waiting times, cluster sizes, records, aftershocks)
described in terms of the diagonal copula. We hope that these
studies can shed light on the n-point properties of the process.
We also critically argue that that previous phenomenological
attempts involving only a long-ranged autocorrelation function
lacked complexity in that they were essentially monoscale.

A. The copula

As a tool to study the (possibly highly nonlinear) correla-
tions among random variables, “copulas,” i.e., joint distribu-
tions of the ranks (see formal definition below), have long been
used in actuarial sciences and finance to describe and model
cross-dependencies of assets, often in a risk management
perspective [20–22]. Although the widespread use of simple
analytical copulas to model multivariate dependencies is more
and more criticized [23,24], copulas remain useful as a tool to
investigate empirical properties of multivariate data [24].

More recently, copulas have also been studied in the context
of serial dependencies in univariate time series, where they find
yet another application range: just as Pearson’s ρ coefficient
is commonly used to measure both linear cross-dependencies
and temporal correlations, copulas are well-designed to assess
non-linear dependencies both transversally or serially [25–27];
we will speak of “self-copulas” in the latter case.

B. Notations

We consider a time series {Xt }t=1...T of length T as
a realization of a discrete stochastic process. The joint
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p+ = 1 − qp− = 1 − q

X(−) X(+)

(a)

p+ = 1 − qp− = q

X(−) = X(+)

(b)

FIG. 1. Two possible definitions of events: (a) p− and p+ are
probabilities of extremes (negative and positive, respectively), so
F (X(+)) = 1 − F (X(−)) = q; (b) p+ is a probability of extreme and
p− = 1 − p+, so F (X(+)) = F (X(−)) = q.

cumulative distribution function (CDF) of n occurrences
(1 � t1 < · · · < tn < T ) of the process is

Ft1,...,tn (x) = P
[
Xt1 < xt1 , . . . ,Xtn < xtn

]
. (1)

We assume that the process is stationary with a distribution
F , and a translational-invariant joint distribution F with long-
ranged dependencies, as is typically the case, e.g., for seismic
and financial data.

A realization of Xt at date t will be called an “event”
when its value exceeds a threshold X(±), a “negative event”
when Xt < X(−) and a “positive event” when Xt > X(+). The
probability p− of such a “negative event” is F (X(−)) and,
similarly, the probability that Xt is above a threshold X(+)

is the tail probability p+ = 1 − F (X(+)).
If a unique threshold X(+) = X(−) is chosen, then obviously

p+ = 1 − p−. This is appropriate when the distribution is one-
sided, typically for positive-only signals, and one wishes to
distinguish between two regimes: extreme events (above the
unique threshold) and regular events (below the threshold).
This case is illustrated schematically in Fig. 1(a). When the
distribution is two-sided, it is more convenient to define X(+)

as the q-th quantile of F and X(−) as the (1 − q)-th quantile
for a given q ∈ [ 1

2 ,1], so p+ = p− = 1 − q. This allows us to
investigate persistence and reversion (antipersistence) effects
in signed extreme events, while excluding a neutral zone of
regular events between X(−) and X(+); see Fig. 1(b).

When the threshold for the recurrence is defined in terms of
quantiles like above (a relative threshold), stationarity is not
needed theoretically but much wanted empirically, as already
stated, otherwise the height of the threshold might change
every time. In contrast, when the threshold is set as a number
(an absolute threshold), there is no issue on the empirical
side, but the theoretical discussion makes sense only under
stationary marginal.

The next section recalls several two-point and many-point
properties of stationary processes and discusses associated
measures of dependence in light of the copula. This rather
theoretical content is followed in Sec. III by applications to
financial data. The definition and some properties of copulas
are recalled in the appendix, and the Gaussian case with
long-ranged correlations is treated.

II. DEPENDENCIES IN DISCRETE-TIME PROCESSES

We consider the case where the discrete times tn in the
definition (1) are equidistant (“regularly sampled”).

A. Two-point dependence measures

Typical measures of dependencies in stationary processes
are two-point expectations that only involve one parameter: the
lag � separating the points in time. For example, the usefulness
of the linear correlation function

ρ(�) = E[XtXt+�] − E[Xt ]E[Xt+�] (2)

is rooted in the analysis of Gaussian processes, as those are
completely characterized by their covariances, and multilinear
correlations are reducible to all combinations of two-point ex-
pectations, according to Isserlis’ theorem [28,29] (also known
later as Wick’s theorem [30]). Some nonlinear dependencies,
like the tail dependence, for example [21,22], are, however,
not expressed in terms of simple correlations but involve the
whole bivariate copula as follows:

C�(u,v) = Ft,t+�(F−1(u),F−1(v)), (3)

where (u,v) ∈ [0,1]2. C� can be understood as the distribution
of the marginal ranks U = F (Xt ),V = F (Xt+�) and contains
the full information on bivariate dependence that is invariant
under increasing transformations of the marginals. For exam-
ple, the conditional probability

p
(�)
++ = P[Xt+� > X(+)|Xt > X(+)], (4)

which is a measure of persistence of the “positive” events, can
be written in terms of copulas, together with all three other
cases of conditioning,

p
(�)
++ = [2p+ − 1 + C�(1−p+,1−p+)]/p+, (5a)

p
(�)
−− = C�(p−,p−)/p−, (5b)

p
(�)
−+ = [p− − C�(p−,1−p+)]/p−, (5c)

p
(�)
+− = [p− − C�(1−p+,p−)]/p+, (5d)

where p
(�)
±± and p

(�)
±∓ are defined similarly to Eq. (4), with the

convention “from first to second,” i.e., the first sign stands
for the conditioning. When X(+) = X(−) = 0 and � = 1, this
is exactly the definition of Boguná and Masoliver [31], with,
accordingly, p− = p+ = F (0); see Fig. 1. Note also that p

(�)
±±

and p
(�)
±∓ are straightforwardly related to the “tail dependence

coefficients” [32].
As an example, consider the Gaussian bivariate copula

of the pair (Xt,Xt+�), whose whole � dependence is in the
linear correlation coefficient ρ(�). Figure 2(a) illustrates the
conditional probabilities (5) as a function of the threshold,
when p+ = p− = 1 − q. A similar plot for the Student copula
(with ν = 5 degrees of freedom) is shown in Fig. 2(b): The
fatter tails of the joint distribution are responsible for the
abnormal behavior of the conditional probabilities in the region
q = 1. When q = 0.5, the coefficients (5) are all equal to

1

2
+ 1

π
arcsin ρ(�)

for any elliptical copula [32].
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FIG. 2. (Color online) Conditional probabilities p
(�)
±∓ (left panels) and p

(�)
±± (right panels) for different values of ρ(�) with thresholds at

p+ = p− = 1 − q. In the case of the independence copula (shown in bold red), the conditional probabilities are all equal: p±∓ = p±± = 1 − q.

Aftershocks

Omori’s law characterizes the � dependence of p
(�)
++, i.e.,

the average frequency of events occurring � time steps after a
main event. This was first stated in the context of earthquake
occurrences [33], where this time dependence is a power law
as follows:

p
(�)
++ = λ�−α. (6)

Notice that any dependence on the threshold must be hidden in
λ according to this description. The average cumulated number
N� of these aftershocks until � is thus

〈N�〉+ = λ
�1−α

1−α
, (7)

with in fact λ ≡ p+ since, when α → 0, N� has no time
dependence, i.e., it counts independent events, and p

(�)
++ must

thus tend to the unconditional probability.
In order to give a phenomenological grounding to this

empirical law also later observed in finance [15,34], Lillo and
Mantegna [35] model the aftershock volatilities in financial
markets as a decaying scale σ (�) times an independent
stochastic amplitude r� with CDF φ. As a consequence, p(�)

++ ∼
1 − φ(X(+)/σ (�)) and the power-law behavior of Omori’s law
results from (i) the power-law marginal φ(r) ∼ r−γ and (ii)
the scale decaying as a power law σ (t) ∼ t−β , so relation
(6) is recovered with α = βγ . The nonstationarity described
by σ is only introduced in a conditional sense and might be
appropriate for aging systems or financial markets, but we
believe that Omori’s law can be accounted for in a stationary
setting and without necessarily having power-law-distributed
amplitudes.

The scaling of p
(�)
++ with the magnitude of the main shock is

encoded in the prefactor λ ≡ p+, which, for example, accounts
for the exponentially distributed magnitudes of earthquakes
(Gutenberg-Richter law [36]). The linear dependence of p

(�)
++

on p+ shall be reflected in the diagonal of the underlying
copula,

C�(p,p) = p2 �−α, (8)

a prediction that can be tested empirically.

Note that Omori’s law is a measure involving only the
two-point probability. In the next subsection, we show which
additional information many-point probability can reflect.

B. Multipoint dependence measures

Although the n-point expectations of Gaussian processes
reduce to all combinations of two-point expectations (2), their
full dependence structure is not reducible to the bivariate
distribution in the general case. Furthermore, when the
process is not Gaussian, even the multilinear correlations are
irreducible. In the general case, the whole multivariate CDF is
needed, but many measures of dependence that we introduce
below only involve the diagonal n-point copula1 as follows:

Cn(p) = Ft+[[1,n]](F
−1(p), . . . ,F−1(p)), (9)

which measures the joint probability that all n � 1 consecutive
variables Xt+1, . . . ,Xt+n are below the upper p-th quantile
of the stationary distribution, p ∈ [0,1], and t + [[1,n]] is a
shorthand for {t+1, . . . ,t+n}. Clearly, C1(p) = p and we set
by convention C0(p) ≡ 1.

Empirically, the n-point probabilities are very hard to
measure due to the large noise associated with such rare
joint occurrences. However, there exist observables that embed
many-point properties and are more easily measured, such as
the length of sequences (clusters) of thresholded events and
the recurrence times of such events, which we study next.

1. Recurrence intervals

The probability π (τ ) of observing a recurrence interval τ

between two events is the conditional probability of observing
a sequence of τ − 1 “nonevents” bordered by two events as
follows:

π (τ ) = P[X (+)

0;τ |X0 > X(+)] (10)

where

X (+)
t ;τ ≡ {Xt+[[1,τ−1]] < X(+),Xt+τ > X(+)} (11)

1We use a calligraphic C in order to make it clearly distinct from
the bivariate copula discussed in the previous section.
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designates a sequence of “nonevents” starting in t and
terminated by a “positive event” at t + τ . (We focus on positive
events, but the recurrence of negative events can be studied
with the substitution X → −X, and the case of recurrence
in amplitudes with the substitution X → |X|). After a simple
algebraic transformation flipping all “>” signs to “<,” it can
be written in the language of copulas as

π (τ ) = Cτ−1(1−p+) − 2 Cτ (1−p+) + Cτ+1(1−p+)

p+
. (12)

The cumulative distribution


(τ ) =
τ∑

n=1

π (n) = 1 − Cτ (1−p+) − Cτ+1(1−p+)

p+
(13)

is more appropriate for empirical purposes, being less sensitive
to noise. These exact expressions make clear—almost straight
from the definition—that (i) the distribution of recurrence
times depends only on the copula of the underlying process
and not on the stationary law, in particular, its domain or
its tails (this is because we take a relative definition of
the threshold as a quantile); (ii) nonlinear dependencies2

are highly relevant in the statistics of recurrences, so linear
correlations can, in the general case, by no means explain
alone the properties of π (τ ); and (iii) recurrence intervals
have a long memory revealed by the (τ +1)-point copula being
involved, so only when the underlying process Xt is Markovian
will the recurrences themselves be memoryless.3 Hence, when
the copula is known [Eq. (A1) in the appendix for Gaussian
processes], the distribution of recurrence times is characterized
by the exact expression in Eq. (12).

The average recurrence time is found straightforwardly by
summing the series

μπ = 〈τ 〉 =
∞∑

τ=1

τ π (τ ) = 1

p+
, (14)

and is universal whatever the dependence structure. This result
was first stated and proven by Kac in a similar fashion [38]. It
is intuitive as, for a given threshold, the whole time series is
the succession of a fixed number p+T of recurrences whose
lengths τi necessarily add up to the total size T , so 〈τ 〉 =∑

i τi/(p+T ) = 1/p+. Note that Eq. (14) assumes an infinite
range for the possible lags τ , which is achieved either by having
an infinitely long time series or, more practically, when the
translationally invariant copula is periodic at the boundaries of
the time series, as is typically the case for artificial data which
are simulated using numerical Fourier transform methods.
Introducing the copula allows us to emphasize the validity
of the statement even in the presence of nonlinear long-term
dependencies, as Eq. (14) means that the average recurrence
interval is copula independent.

2“Nonlinear dependencies” designates any type of serial depen-
dence that is not grasped by the linear autocorrelation like, for exam-
ple, the correlation of absolute values, the conditional persistence or
reversion probabilities Eq. (5), the tail dependencies, and so on.

3Renewal processes are also able to produce independent consecu-
tive recurrences [16,37].

More generally, the m-th moment can be computed as well
by summing τmπ (τ ) over τ as follows:

〈τm〉 = 1 + ∑∞
τ=1 [|τ +1|m − 2τm + |τ −1|m] Cτ (1−p+)

p+
.

(15)
In particular, the variance of the distribution is

σ 2
π ≡ 〈τ 2〉 − μ2

π = 2

p+

∞∑
τ=1

Cτ (1−p+) − 1−p+
p2+

. (16)

It is not universal, in contrast with the mean, and can be related
to the average unconditional waiting time (see below). Notice
that in the independent case, and because of discreteness
effects, the variance σ 2

π = (1 − p+)/p2
+ is not exactly equal

to the squared mean μ2
π = 1/p2

+, as would be the case for
the exponential distribution of the recurrence intervals of a
continuous-time Poisson process.

It is important to notice that the main ingredient in the
distribution of recurrence times (13) is the copula (i.e.,
the serial dependence structure) rather than the stationary
distribution F , a finding already noted by Olla [39], but
which the current description highlights. The sensitivity to
the extreme statistics of the process is in fact hidden in p+,
but what matters more is the (possibly multiscale) dependence
structure Cτ .

2. Conditional recurrence intervals and clustering

The dynamics of recurrence times is as important as
their statistical properties, and in fact impacts the empirical
determination of the latter.4 It is now clear, both from empirical
evidences and analytically from the discussion on Eq. (12),
that recurrence intervals have a long memory. In dynamic
terms, this means that their occurrences show some clustering.
The natural question is then as follows: “Conditionally on an
observed recurrence time, what is the probability distribution
of the next one?” This probability of observing an interval τ ′
immediately following an observed recurrence time τ is

P[X (+)

τ ;τ ′ |X (+)

0;τ ,X0 > X(+)]. (17)

Again, flipping the “>” to “<” allows us to decompose it as

Cτ−1;τ ′−1 − Cτ ;τ ′−1 − Cτ−1;τ ′ + Cτ ;τ ′

Cτ−1 − 2Cτ + Cτ+1
− π (τ + τ ′)

π (τ )
, (18)

where the (τ +τ ′)-point probability

Cτ ;τ ′(p) = F[[0,τ+τ ′]]\{τ }(F−1(p), . . . ,F−1(p))

shows up, where [[0,τ +τ ′]]\{τ } is the sequence [[0,τ +τ ′]],
where τ has been dropped. Of course, this exact expression has
no practical use, again because there is no hope of empirically
measuring any many-point probabilities of extreme events with
a meaningful signal-to-noise ratio. We rather want to stress
that nonlinear correlations and multipoint dependencies are

4Distribution testing for π (τ ) involving goodness-of-fit tests [17]
should be discarded because those are not designed for dependent
samples and rejection of the null cannot be relied upon. See
Chicheportiche and Bouchaud [42] for an extension of goodness-of-fit
tests when some dependence is present.
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relevant and that a characterization of clustering based on
the autocorrelation of recurrence intervals is an oversimplified
view of reality.

3. Waiting times

The conditional mean residual time to next event, when
sitting τ time steps after a (positive) event, is

〈w|τ 〉 =
∞∑

w=1

w π (τ +w) = 1

p+
Cτ (1−p+). (19)

One is often more concerned with unconditional waiting
times, which is equivalent to asking what the size w of a se-
quence of “nonevents” starting now will be, regardless of what
happened previously. The distribution φ(w) = P[X (+)

0;w+1] of
these waiting times is equal to

φ(w) = Cw(1−p+) − Cw+1(1−p+), (20)

and its expected value is

μφ = 〈w〉 =
∞∑

w=1

Cw(1−p+), (21)

consistently to what would be obtained by averaging 〈w|τ 〉
over all possible elapsed times in Eq. (19). From Eq. (16), we
have the following relationship between the variance of the
distribution π of recurrence intervals and the mean waiting
time:

σ 2
π = μπ [2μφ + 1] − μ2

π . (22)

4. Sequences lengths

The serial dependence in the process is also revealed by
the distribution of sequences sizes. The probability that a
sequence of consecutive negative events,5 starting just after
a “nonevent,” will have a size n is

ψ(n) = Cn(p−) − 2 Cn+1(p−) + Cn+2(p−)

p− (1 − p−)
(23)

and the average length of a random sequence

μψ = 〈n〉 =
∞∑

n=1

nψ(n) = 1

1 − p−
(24)

is universal, just like the mean recurrence time. This property
rules out the analysis of Boguná and Masoliver [31], who claim
to be able to distinguish the dependence in processes according
to the average sequence size.

5. Record statistic

We conclude this theoretical section on multipoint non-
linear dependencies by mentioning that the diagonal n-point

5We consider the case of “negative” events, i.e., those with Xt < X(−)

because it expresses simply in terms of diagonal copulas. The mirror
case with “positive” events has the exact same expression but Cn must
be inverted around the median. For a symmetric F , this distinction is
irrelevant.

TABLE I. Different probabilities introduced with thresholds
defined as F (X(+)) = q = 1 − F (X(−)) for the white noise process.

π+(τ ) 〈τ 〉+ φ+(w) 〈w〉+ ψ−(n) 〈n〉− R(t)

(1−q) qτ−1 1
1−q

(1−q) qw q

1−q
q (1−q)n−1 1

q

1
t

copula Cn can be alternatively understood as the distribution
of the maximum of n realizations of X in a row, since

P
[

max
τ�n

{Xτ } < F−1(p)
] = P

[
X[[1,n]] < F−1(p)

]
is equal to Cn(p). Thus, studying the statistics of such “local”
maxima in short sequences (see, e.g., Ref. [40]) can provide
information on the multipoint properties of the underlying
process. The CDF of the running maximum, or record, is
Ct (F (x)) and the probability that t > 1 will be a record-
breaking time is the joint probability

R(t) = P
[

max
τ<t

{Xτ } < Xt

]
,

which is irrespective of the marginal law.
A summary of all the quantities introduced above is

provided in Table I for the case of a white noise (WN), whose
joint distribution Eq. (1) factorizes into a product over the ti’s.

III. FINANCIAL SELF-COPULAS

We illustrate some of the quantities introduced above on
series of daily index returns. The properties of the time series
used are summarized in Table II.

A. Conditional probabilities and two-point dependencies

We reproduce the study of Boguná and Masoliver [31] on
the statistic of price changes conditionally on previous return
sign and extend the analysis to any threshold |X(±)| � 0 and
to remote lags. In addition to the time series of the five stock
indices presented in Table II, we look at electroencephalogram
(EEG) data from Ref. [41]. We first illustrate on Fig. 3 the
conditional probabilities p

(�)
±± (filled symbols) and p

(�)
±∓ (empty

symbols) with varying threshold q = F (X(+)) = 1 − F (X(−)),
for � = 1. To study the departure from the independent case, it
is more convenient to subtract the WN contribution to get the
corresponding excess probabilities.

TABLE II. Description of the data set used: Time series of
logarithmic returns Xt = ln(Pt/Pt−1) of daily closing prices of
international stock indices.

Stock Index Country From To T

S&P-500 USA Jan. 02, 1970 Dec. 23, 2011 10 615
KOSPI-200 S. Korea Jan. 03, 1990 Dec. 26, 2011 5 843
CAC-40 France Jul. 09, 1987 Dec. 23, 2011 6 182
DAX-30 Germany Jan. 02, 1970 Dec. 23, 2011 10 564
SMI-20 Switzerland Jan. 07, 1988 Dec. 23, 2011 5 902
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FIG. 3. (Color online) Conditional extreme probabilities at � = 1 (the white noise contribution p± = 1 − q has been subtracted, hence,
the possibly negative values; compare with Fig. 2). Filled symbols are for persistence, and empty symbols for reversion. Upward triangles are
conditioned on positive jumps, and downward triangles are conditioned on negative jumps.

First, the EEG data [Fig. 3(EEG)] exhibit a very strong
and symmetric persistence; reversion on the other side is shut
down for extreme events (like for WN) and is more suppressed
than WN for intermediate values. As of the plots relative
to financial indices, several features can be immediately
observed: Positive events (upward triangles) trigger more
subsequent positive (filled) than subsequent negative (empty)
events; negative events (downward triangles) trigger more
subsequent negative (filled) than subsequent positive (empty)
events, except in the far tails, q � 0.9, where reversion is
stronger than persistence after a negative event. Both of these
effects dominate the WN benchmark, but the latter effect is,
however, much stronger. This overall behavior is similar for
the time series of returns of all the stock indices studied.
The shapes of p±± and p±∓ versus q are not compatible
with the Student copula benchmarks (correlation ρ = 0.05
and degrees of freedom ν = 5) shown in dashed and dotted
lines, respectively. Notice that, due to its nontrivial tail
correlations, see Ref. [24], the Student copula does generate
increased persistence with respect to WN, lower reversion in
the core, and higher reversion in the tails. But, empirically,
the reversion is asymmetric and typically stronger when
conditioning on negative events rather than on positive events,
a property reminiscent of the leverage effect, which cannot
be accounted for by a pure (symmetric) Student copula.
Some of the indices exhibit more pronounced reversion and

persistence effects. Interestingly, the CAC-40 returns have a
regime 0.5 � q � 0.9 close to a WN (with, in particular, a
value of p

(1)
±± = p

(1)
±∓ very close to 0 at q = 0.5, revealing an

inefficient conditioning, i.e., as many positive and negative
returns immediately following positive or negative returns),
but the extreme positive events q � 0.9 show a very strong
persistence, and the extreme negative events a very strong
reversion.

Chicheportiche and Bouchaud [42] study in detail the p and
� dependence of [C�(p,p) − p2] and [C�(p,1−p) − p (1−
p)]—which are straightforwardly related to p

(�)
±± and p

(�)
±∓,

respectively—and find that the self-copula of stock returns
can be modeled with a high accuracy as the product Xt = vtεt

of a residual εt and a log-normally distributed scale (the
“volatility”) vt with log-decaying correlation, in agreement
with multifractal volatility models. We give an overview of the
results in Fig. 4, for the aggregated copula of all stocks in the
S&P500 in 2000–2004. It is possible to show precisely how
every kind of dependence present in the underlying process
(discussed in Ref. [43]) reflects itself in p

(�)
++ for different q’s:

Short-ranged linear anticorrelation accounts for the central
part (p ≈ 0.5) departing from the WN prediction, long-ranged
amplitude clustering is responsible for the “M” and “W”
shapes that reveal excess persistence and suppressed reversion,
and the leverage effect can be observed in the asymmetric
heights of the “M” and “W”.
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FIG. 4. (Color online) The self-copula for close-by (� = 1 day)
and remote (� = 128 days) lags, with the product copula subtracted.
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value determined empirically on stock returns is in bold black, and
a fit with the model of Ref. [42] is shown in thin red. Adapted from
Ref. [42].

B. Recurrence intervals and many-point dependencies

Even the elementary, two-point measures of self-
dependence studied until now show that nonlinearities and
multiscaling—in the simple sense of a memory ranging
over (possibly infinitely) many scales in the past—are two
ingredients that must be taken into account when attempting
to describe financial time series; we now examine their
many-point properties. As an example, we compute the
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FIG. 6. (Color online) Conditional expected shortfall of a Gaus-
sian pair (X0,X�) for different values of ρ(�). Left: Lower tail; Right:
Upper tail. The value at q = 0.5 is

√
2/π ρ(�).

distribution of recurrence times of returns above a threshold,
X(+) = F−1(1−p+).

Figure 5 shows the tail cumulative distribution 1 − 
(τ ) of
the recurrence intervals of DAX returns, at several thresholds
p+ = 1/〈τ 〉—the distribution for other indices is very similar.
In the log-log representation used, an exponential distribution
(corresponding to independent returns) would be concave and
rapidly decreasing, while a power law would decay linearly.
The empirical distributions fit neither of those, and Ludescher
et al. [44] suggested a parametric fit of the form

1 − 
(τ ) = [1 + b (a−1) τ ](a−2)/(a−1). (25)
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FIG. 5. DAX index returns. Left: Tail probability 1 − 
(τ ) of the recurrence intervals, at several thresholds p+ = 1/〈τ 〉, in log-log scale.
Gray curves are best fits to Eq. (25) suggested in Ref. [44]. Right: Estimated parameters a and b of the best fit.
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FIG. 7. (Color online) Conditional extreme amplitudes, at lags � = 1,5,20, from left to right. The upper-right and lower-left quadrants
express persistence, while the upper-left and lower-right quadrants reveal reversion. For a scale-free dependence structure, one would expect
the magnitudes to decrease with the lag � but the global shape to be conserved. What we instead observe is important changes of configuration
at different lags: For example, the strong reversion of negative tail events at � = 1 vanishes at farther lags and even turns into strong persistence
for the CAC and DAX indices. That is to say, these indices tend to mean-revert after a negative event at the daily frequency but to trend on the
weekly scale. Similarly, the strong persistence of positive events at � = 1 converts to a strong reversion in the tails at � = 20 for the European
indices (CAC, DAX); a weaker reversion is observed at intermediate scale (� = 5) for most indices (including US and Korean).
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However, important deviations are present in the tail regions
for thresholds at X(+) � F−1(0.9), i.e., 〈τ 〉 � 1/(1 − 0.9) =
10: as a consequence, there is no hope that the curves for
different threshold collapse onto a single curve after a proper
rescaling [45], as is the case e.g., for seismic data. A more
fundamental determination of the form of 
(τ ) should rely on
Eq. (13) and a characterization of the τ -point copula.

Similarly to the statistic of the recurrence intervals, their
dynamics must be studied carefully. We have shown that the
conditional distribution of recurrence intervals after a previous
recurrence is very complex and involves long-ranged nonlinear
dependencies, so a simple assessment of recurrence times
autocorrelation may not be informative enough for a deep
understanding of the mechanisms at stake.

IV. DISCUSSION

A. Conditional expected shortfall

In addition to caring for frequencies of conditional events,
one can try to characterize their magnitudes. This of course
no longer fits in the framework of copulas (that “count”
joint events) but can instead be quantified by a multivariate
generalization of the expected shortfall [(ES) or tail conditional
expectation]. For a single random variable with cdf F , the
expected shortfall is the average loss when conditioning on
large events,

ES(p−) = E[Xt |Xt < X(−)] = 1

p−

∫ F−1(p−)

−∞
x dF (x)

= 1

p−

∫ p−

0
F−1(p) dp.

In the same spirit, for bivariate distributions, the mean
return conditionally on preceding return “sign” is defined as
follows:

〈X〉(�)
− = E[Xt |Xt−� < X(−)], (26a)

〈X〉(�)
+ = E[Xt |Xt−� > X(+)]. (26b)

As an example, consider the Gaussian bivariate pair (Xt,Xt+�),
whose whole � dependence is in the linear correlation
coefficient ρ(�). Figure 6 shows the conditional expected
shortfall that can be computed exactly from Eqs. (26) and
is proportional to the inverse Mills ratio [46] as follows:

〈X〉± = ±ρ(�)
�′(X(±))

p±
,

where � denotes the CDF of the univariate standard normal
distribution.

This Gaussian prediction is to be compared with an
empirical assessment of the same quantity for series of returns
of stock indices. Figure 7 displays the behavior of 〈X〉± versus
q (we also show the median med(X)±) at lags corresponding
to 1 day (� = 1), 1 week (� = 5), and 1 month (� = 20).
The conditional amplitudes 〈X〉± measure “how large” a
realization will be on average after an event at a given
threshold, whereas the conditional probabilities p±± and p±∓
quantify “how often” repeated such events occur. Mind the
unconditional mean and median values, both above zero and
distinct from each other. At � = 1, the reversion of extreme

events is revealed again by the change of monotonicity from
q ≈ 0.8 onward and more strongly for q > 0.9 where 〈X〉− has
an opposite sign than the preceding return; this corroborates the
observation made on conditional probabilities above. Beyond
the next day, the general picture is that dependencies tend to
vanish and the empirical measurements get more concentrated
around the WN prediction. However, tail effects are strongly
present, with unexpectedly a typical behavior opposite to
that of � = 1: weekly and monthly reversion of extreme
positive jumps. See the caption for a detailed discussion of
the specificities of each stock index at every lag �.

B. Conclusion

We report several properties of recurrence times and the
statistic of other observables (waiting times, cluster sizes,
records, and aftershocks) in light of their description in terms
of the diagonal copula and hope that these studies can shed
light on the n-point properties of the process by assessing the
statistics of simple variables rather than positing an a priori
dependence structure.

The exact universality of the mean recurrence interval
imposes a natural scale in the system. A scaling relation in
the distribution of such recurrences is only possible in the
absence of any other characteristic time. When such additional
characteristic times are present (typically in the nonlinear
correlations), no such scaling is expected, in contrast with
time series of earthquake magnitudes.

We also stress that recurrences are intrinsically multipoint
objects related to the nonlinear dependencies in the underlying
time series. As such, their autocorrelation is not a reliable
measure of their dynamics, for their conditional occurrence
probability is largely history dependent.

Ultimately, recurrences may be used to characterize risk
in a new fashion. Instead of (or in addition to) caring for the
amplitude and probability of adverse events at a given horizon,
one should be able to characterize the risk in a dynamical point
of view. In this sense, an asset A1 could be said to be “more
risky” than another asset A2 if its distribution of recurrence of
adverse events has “bad” properties that A1 does not share. This
amounts to characterizing the disutility by “when?” shocks are
expected to happen, in addition to the usual “how often?” and
“how large?”.

It would be interesting to study many-point dependencies
in continuous-time processes, where the role of the n-point
copula is played by a counting process. The events to be
counted can either be triggered by an underlying continuous
process crossing a threshold or more directly be modeled as a
self-exciting point process, like a Hawkes process. A typical
financial application could be found in transaction times in a
limit order book.
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APPENDIX A: SIMPLE COPULAS
AND SKLAR’S THEOREM

Sklar’s (rather trivial) theorem [47] states that any multivari-
ate distribution F[[1,n]](x1, . . . ,xn) can be written in terms of
univariate marginal distribution functions Fi(xi) (i = 1, . . . ,n)
and a “copula” function C(u1, . . . ,un) on [0,1]n which, by
definition, characterizes the dependence structure between the
variables. In practice, constructing the copula is achieved
letting ui = Fi(xi) for every variable i. This is expressed
mathematically by Eq. (3) for bivariate distributions and can
be generalized straightforwardly [see Eq. (9) for the diagonal
of the n-point copula].

As an example, the Gaussian diagonal copula is

Cn(p) = �ρ(�−1(p), . . . ,�−1(p)), (A1)

where �−1 is the univariate inverse CDF and �ρ denotes the
multivariate CDF with (n × n) covariance matrix ρ, which is
Tœplitz with symmetric entries

ρtt ′ = ρ(|t − t ′|), t,t ′ = 1, . . . ,n. (A2)

The WN product copula Cn(p) = pn is recovered in the
limit of vanishing correlations ρ(�) = δ�0, and other examples
include the exponentially correlated Markovian Gaussian

noise, the logarithmically correlated multifractal Gaussian
noise, and the power-law correlated (thus scale-free) fractional
Gaussian noise.

The latter is defined by the correlation function

ρ(�) = 1
2 [|� + 1|2H − 2�2H + |� − 1|2H ],

where the exponent H , called the “Hurst index,” ranges from 0
(persistence) to 1 (antipersistence), with H = 1/2 characteriz-
ing the Gaussian white noise [48]. Figure 8 displays Cn(p+ =
0.7) versus n for different Hurst indices H = 0.5,0.7,0.9.
The asymptotic behavior at large n cannot be displayed here
because of numerical restrictions, but the small n properties
are more relevant for characterizing short-time conditional
dynamics.

Similarly to Eq. (A1), the Student copula [illustrated in
Fig. 2(b) for the bivariate case] is defined as

Cn(p) = Tρ,ν(T −1(p), . . . ,T −1(p)),

where T −1 is the univariate inverse Student-t CDF and
Tρ,ν denotes the multivariate CDF with scale matrix ρ and
ν degrees of freedom; see, e.g., Ref. [49] for a modern
treatment.

APPENDIX B: PROOFS OF FORMULAS

1. Equation (12)

π (τ ) = P[Xτ > X(+),X[[1;τ−1]] < X(+)|X0 > X(+)].

After a simple algebraic transformation flipping all “>” signs
to “<”, it can be written in the language of copulas as
follows:

π (τ ) = P[Xτ > X(+),X[[1;τ−1]] < X(+); X0 > X(+)]

P[X0 > X(+)]

= P[X[[1;τ−1]] < X(+)]

p+

− P[Xτ < X(+),X[[1;τ−1]] < X(+)]

p+

− P[X[[1;τ−1]] < X(+); X0 < X(+)]

p+

+ P[Xτ < X(+),X[[1;τ−1]] < X(+); X0 < X(+)]

p+
,

π (τ ) = Cτ−1(1−p+) − 2 Cτ (1−p+) + Cτ+1(1−p+)

p+
. (B1)

2. Equation (15)

〈τm〉 =
∞∑

τ=1

τmπ (τ ) = 1

p+

{ ∞∑
τ=1

τm Cτ−1(1−p+) − 2
∞∑

τ=1

τm Cτ (1−p+) +
∞∑

τ=1

τm Cτ+1(1−p+)

}

= 1

p+

{
1 +

∞∑
τ=2

τm Cτ−1(1−p+) − 2
∞∑

τ=1

τm Cτ (1−p+) +
∞∑

τ=0

τm Cτ+1(1−p+)

}

〈τm〉 = 1 + ∑∞
τ=1 [|τ +1|m − 2τm + |τ −1|m] Cτ (1−p+)

p+
. (B2)
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3. Equation (17)

The probability of observing an interval τ ′ immediately following an observed recurrence time τ is, with the definition of
Eq. (11),

P[X (+)

τ ;τ ′ |X (+)

0;τ ,X0 > X(+)].

Again, flipping the “>” to “<” allows us to decompose it as

P[X (+)

τ ;τ ′ |X (+)

0;τ ,X0 > X(+)] = P[Xτ+k < X(+),Xτ > X(+),Xn < X(+),X0 > X(+),1 � n < τ,1 � k < τ ′]
P[Xn < X(+),X0 > X(+),1 � n < τ ] − P[Xn < X(+),X0 > X(+),1 � n � τ ]

− P[Xτ+k < X(+),Xτ > X(+),Xn < X(+),X0 > X(+),1 � n < τ,1 � k � τ ′]
P[Xn < X(+),X0 > X(+),1 � n < τ ] − P[Xn < X(+),X0 > X(+),1 � n � τ ]

= P[Xτ+k < X(+),Xτ > X(+),Xn < X(+),1 � n < τ,1 � k < τ ′]
Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

− P[Xτ+k < X(+),Xτ > X(+),Xn < X(+),0 � n < τ,1 � k < τ ′]
Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

− P[Xτ+k < X(+),Xτ > X(+),Xn < X(+),1 � n < τ,1 � k � τ ′]
Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

+ P[Xτ+k < X(+),Xτ > X(+),Xn < X(+),0 � n < τ,1 � k � τ ′]
Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

= Cτ−1;τ ′−1(p) − Cτ+τ ′−1(p)

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)
− Cτ ;τ ′−1(p) − Cτ+τ ′(p)

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

− Cτ−1;τ ′(p) − Cτ+τ ′(p)

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)
+ Cτ ;τ ′(p) − Cτ+τ ′+1(p)

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

= Cτ−1;τ ′−1 − Cτ ;τ ′−1 − Cτ−1;τ ′ + Cτ ;τ ′

Cτ−1 − 2Cτ + Cτ+1
− π (τ + τ ′)

π (τ )
, (B3)

where

Cτ ;τ ′(p) = F[[0;τ+τ ′]]\{τ }(F−1(p), . . . ,F−1(p)).
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