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h i g h l i g h t s

• Copula is a natural model-free framework to study non-linear dependencies like recurrences.
• Non-linear dependencies do impact both the statistics and dynamics of recurrence times.
• Scaling arguments for the unconditional distribution may not be applicable.
• Fitting and/or simulating the intertemporal distribution of recurrence intervals is very much system specific.
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a b s t r a c t

Study of recurrences in earthquakes, climate, financial time-series, etc. is crucial to better
forecast disasters and limit their consequences. Most of the previous phenomenological
studies of recurrences have involved only a long-ranged autocorrelation function, and
ignored the multi-scaling properties induced by potential higher order dependencies. We
argue that copulas is a natural model-free framework to study non-linear dependencies in
time series and related concepts like recurrences. Consequently, we arrive at the facts that
(i) non-linear dependences do impact both the statistics and dynamics of recurrence times,
and (ii) the scaling arguments for the unconditional distribution may not be applicable.
Hence, fitting and/or simulating the intertemporal distribution of recurrence intervals is
very much system specific, and cannot actually benefit from universal features, in contrast
to the previous claims. This has important implications in epilepsy prognosis and financial
risk management applications.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Extreme events are widely studied in seismicity, astronomy, physiology, finance, etc. [1]. In particular, the inter-
occurrence times (or recurrence intervals), i.e. the periods between two occurrences of the observed phenomenon that
exceed a given threshold, have important implications in risk management in a view to predict the advent of such extreme
events or characterize aftershocks.
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If we consider a time series {Xt}t=1...T of length T , as a realization of a discrete stochastic process, then the joint cumulative
distribution function (CDF) of n occurrences (1 ≤ t1 < · · · < tn < T ) of the process is:

Ft1,...,tn (x) = P[Xt1 < xt1 , . . . , Xtn < xtn ]. (1)

We assume that the process is stationary with a distribution F , and a translational-invariant joint distribution F with long-
ranged dependences, as is typically the case e.g. for seismic and financial data.

A realization of Xt at date t is called an ‘‘event’’ when its value exceeds a threshold in the form of a quantile X (+)
=

F−1(1− p+), where p+ is the small unconditional probability of crossing that threshold. As we show just below, recurrences
of such events only involve the diagonal n-points probability

Cn(p) = Ft+[[1,n]](F−1(p), . . . , F−1(p)), (2)

that all n ≥ 1 consecutive variables Xt+1, . . . , Xt+n are below the upper pth quantile of the stationary distribution, where
p ∈ [0, 1] and t + [[1, n]] is a shorthand for {t + 1, . . . , t + n}. Clearly, C1(p) = p and we set by convention C0(p) ≡ 1. Eq. (2)
in fact defines, through Sklar’s theorem, the diagonal of what statisticians call the n-points ‘‘copula’’. A copula is nothing else
than a multivariate CDF with uniform marginals, see e.g. Ref. [2].

A consensus has emerged on the statistics of recurrence times frommany phenomenological studies on real or simulated
data with long-ranged correlations: the unconditional probability distribution function (PDF) of recurrence intervals τ
follows a scaling relation [3–6]

π (τ ) =
1
τc

f
(

τ

τc

)
, (3)

where τc is a characteristic recurrence time for a given time series and a choice of event-triggering threshold. Possible
and reported scaling functions include: exponential decay ln f (x) ∼ x (which corresponds to independent arrivals),
power-law decay ln f (x) ∼ ln x, stretched exponential (generalized Gamma) ln ln f (x) ∼ ln x, and others, e.g. mixed
stretched exponential + power-law, possibly due to finite size and discreteness effects [5,6]. Furthermore, the sequence
of recurrence times {τi} exhibits long-term correlation ⟨τiτi+ℓ⟩ ∼ ℓ−γ [7]. Yet we show that this consensus, founded on
the misconception that ‘‘nonlinearities are not needed to explain the properties studied’’ [4], is incorrect since the whole
non-linear dependences affect π (τ ). In particular, simple theories based on a benchmark model of triggered seismicity have
also found this universality to be only approximate [8,9].

Some ad hoc attempts at bringing in non-linearities and/or multi-scaling have also been made, in view of modeling the
behavior of a specific system, e.g. financial returnswithmultifractal log-volatility [10,11]. In this paperwe show that copulas
is a natural model-free theoretical framework to study non-linear dependencies in time series. This implies that non-linear
correlations and multi-point dependences are relevant for the related concept of recurrences. As a consequence, a scaling
relation of the form (3) is at best approximate, andwould only hold for processes exhibiting a time-dependence characterized
by a unique time scale τc. Furthermore, a characterization of clustering based on the autocorrelation of recurrence intervals
is an oversimplified view of the reality.

This paper would further illustrate the use of copulas in the very recent study of serial dependences in time series
and discrete processes, rather than of multivariate dependences (for what the concept was originally introduced), and
complement the studies of Refs. [12–14] with an emphasis on the ‘‘no-scaling’’ argument, see below. It is mainly motivated
by the invariance property of the copula under monotonous rescaling of the variables, i.e. the irrelevance of the marginal
(stationary) distribution, for some applications we investigate here.

2. Recurrence interval studies using copulas and results

Empirically, the n-points probabilities are very hard to measure due to the large noise associated with such rare joint
occurrences. However, there exist observables that embed many-points properties and are more easily measured, such as
the length of sequences (clusters) of thresholded events [13], and the recurrence times of such events, that we study here
using copulas.

As a first example, the Gaussian diagonal copula is

Cn(p) = Φρ

(
Φ−1(p), . . . , Φ−1(p)

)
(4)

where Φ−1 is the univariate inverse CDF, and Φρ denotes the multivariate CDF with (n × n) covariance matrix ρ, which is
Tœplitz with symmetric entries

ρtt ′ ≡ ⟨XtXt ′⟩ = ρ(|t − t ′|), t, t ′ = 1, . . . , n. (5)

Although the n-points expectations of Gaussian processes reduce to all combinations of the 2-points expectations (5), their
full dependence structure is not reducible to the bivariate distribution, unless the process is also Markovian, i.e. only in the
particular case of exponential correlation. The White Noise product copula Cn(p) = pn is recovered in the limit of vanishing
correlationsρ(ℓ) = 0∀ℓ, and other examples include the exponentially correlatedMarkovianGaussianNoise, the power-law
correlated (thus scale-free) Fractional Gaussian Noise, and the logarithmically correlated multifractal Gaussian Noise.
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Note that copulas are invariant under any continuous monotonous transformation of the Xt ’s, and are thus better suited
to study temporal dependences than e.g. the linear correlation function. Indeed if f and g are two increasing functions,
⟨f (Xt )f (Xt+τ )⟩ and ⟨g(Xt )g(Xt+τ )⟩ can be arbitrarily different in spite of the underlying process being the same, whereas the
copulas of {f (Xt )}t and {g(Xt )}t are identical.

2.1. Intertemporal distribution of recurrence times

The probability π (τ ) of observing a recurrence interval τ between two events is the conditional probability of observing
a sequence of τ − 1 ‘‘non-events’’ bordered by two events:

π (τ ) = P[Xτ > X (+), X[[1;τ [[ < X (+)
|X0 > X (+)

].

After a simple operation flipping all ‘>’ signs to ‘<’, it can be written in the language of copulas as [15]:

π (τ ) =
Cτ−1(1 − p+) − 2 Cτ (1 − p+) + Cτ+1(1 − p+)

p+

. (6)

Please see Appendix for a detailed derivation of this equation.
The cumulative distribution

Π (τ ) =

τ∑
n=1

π (n) = 1 −
Cτ (1 − p+) − Cτ+1(1 − p+)

p+

is more appropriate for empirical purposes, being less sensitive to noise.1 These exact expressions make clear – almost
straight from the definition – that (i) the distribution of recurrence times depends only on the copula of the underlying process
and not on the stationary law, in particular its domain or its tails (this is becausewe take a relative definition of the threshold
as a quantile); (ii) non-linear dependences are highly relevant in the statistics of recurrences, so that linear correlations can
in the general case by no means explain alone the properties of π (τ ) [16]; and (iii) recurrence intervals have a long memory
revealed by the (τ + 1)-points copula being involved, so that the recurrences themselves can only be memoryless in very
restricted caseswhere this copula cancels out in themultivariate distribution (see Eq. (A.1) below).2 Hence, when the copula
is known (Eq. (4) for Gaussian processes), the distribution of recurrence times is exactly characterized by the analytical
expression in Eq. (6).

The average recurrence time µπ ≡ ⟨τ ⟩ is found straightforwardly, and the variance σ 2
π ≡ ⟨τ 2

⟩ − µ2
π of the distribution

can be computed as well:

µπ =
1
p+

, (7)

σ 2
π =

2
p+

∞∑
τ=1

Cτ (1 − p+) −
1 − p+

p2+
. (8)

Importantly, µπ is universal whatever the dependence structure.3 Introducing the copula allows to emphasize the validity
of the statement even in the presence of non-linear long-term dependences, as Eq. (7) means that the average recurrence
interval is copula-independent. This is intuitive as, for a given threshold, the whole time series is the succession of a fixed
number p+T of recurrences whose lengths τi necessarily add up to the total size T , so that ⟨τ ⟩ =

∑
iτi/(p+T ) = 1/p+. Note

that Eq. (7) assumes an infinite range for the possible lags τ , which is achieved either by having an infinitely long time series,
or more practically when the translational-invariant copula is periodic at the boundaries of the time series, as is typically the
case for artificial data which are simulated using numerical Fourier Transform methods. The variance σ 2

π is not universal, in
contrast with the mean, and can be related to the average unconditional waiting time [13].

The universality of the average recurrence time has important implications for the potential scaling properties of the
PDF of recurrence times. Indeed, it has been believed that π (τ ) can be fitted by a unique scaling function Eq. (3), with f
depending on the underlying process and its dependence structure. Such a scaling would be of paramount importance in
the empirical investigation of extreme events (for which p+ is close to 0 and there is often too few data points to conduct a
thorough statistical study), as it wouldmake it possible to extrapolate the distribution found at low thresholds to large ones.
Now, because there is a one-to-one correspondence between ⟨τ ⟩ and p+ following the universality (7), the natural scale τc
is necessarily the mean recurrence times, and the relation (3) describes in fact a scaling of π with the threshold.

On the theoretical side, the fact that the distribution of recurrence times exhibits a universal scaling ranging over several
orders of magnitude has been shown to be related to criticality in long-ranged correlated complex systems, like invariance

1 If π (τ ) has exponential tails, then 1−Π (τ ) has the same tails; if π (τ ) has power-law tails, then 1−Π (τ ) has power-law tails, too. Hence representing
1 − Π (τ ) in a lin-log or log–log scale, respectively, is as meaningful as representing π (τ ) itself.

2 This is obviously the case for the regular Poisson process, but also for the fractional Poisson process [17] and some renewal processes [6,18].
3 This result was first stated and proven in Ref. [19], in a similar fashion.
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(a) IBM daily stock returns.

(b) EEG.

Fig. 1. (Color online) To illustrate that no scaling occurs when non-linear dependences and/or several time scales are involved in the dependence structure,
we plot the tail probability 1 − Π (τ ) of the recurrence intervals versus τ/⟨τ ⟩, at several thresholds p+ = 1/⟨τ ⟩ for (a) financial data, and (b) EEG
data.

under Renormalization-Group transformation [20,21]. But such a universal scaling can only exist for linearly correlated
processes [16], and there is even a concern [22] whether there exist at all fixed-point solutions of the RG equations other
than the trivial exponential function corresponding to independent arrivals. Therefore, since the average recurrence time
does not carry any information whatsoever about the dependence structure of the process, a scaling relation of the form (3)
is a trivial one when τc = ⟨τ ⟩, and it might hold for processes exhibiting a time-dependence fully characterized by linear
correlations, and no other relevant time scale; this is the case only for the power-law correlated Gaussian process [23] (but
see [24]), for which π (τ ) can anyways be expressed analytically according to Eqs. (4), (6) with ρ(ℓ) ∼ ℓ−γ . But no such
simple scaling is expected in the general case when either non-linear dependences are present, and/or when several time
scales are involved in the dependence structure.

We illustrate this on Fig. 1(a) for the daily log-returns of the IBM stock from 1962 to 2010 (same data as in Ref. [25],
with however a sign flip since our definition of the threshold is upside whereas there it is downside). Financial returns
have a very short term linear correlation, a very long term and multifractal correlation of amplitudes, and other kinds of
intermediate-scale dependences (e.g. leverage effect) [26], that show up in the copula in a very peculiar fashion [12]. Hence,
as expected [25], the distribution of recurrence times has amore complex functional form thanwhat is allowed by the scaling
in Eq. (3), as reproduced on Fig. 1(a). One may note by the way that the correlation of the amplitudes (volatility clustering)
is the dominant one, so that the series of ωt = log |Xt | is mostly linearly correlated and in fact the recurrence intervals
distribution of ωt does exhibit an approximate scaling of the type (3) [27,28,5].

We also illustrate the non-scaling behavior onmeasurements of electroencephalograms (EEG) on brain surface of patients
awakewith eyes open (set A of the dataset studied in Ref. [29]). It consists of 100 stationary series of 4097 observations each;
once centered and rescaled, all series have same distribution. The results are shown on Fig. 1(b): the presence of several (in
fact periodic) scales in the dependence structure forbids the scaling of π (τ ) with ⟨τ ⟩.

In passing, notice that the statistics of recurrence times ismuch related to that of sequence lengths: an interval τ between
two events always characterizes at the same time a sequence of τ − 1 ‘‘non-events’’. In this respect, the average sequence
length can also be shown to be universal, what rules out part of the analysis of Ref. [30], where the authors use the relation
(7) as a test of independence of the events above/below the threshold X (+)

= 0.
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2.2. Conditional recurrence times

The dynamics of recurrence times is as important as their statistical properties, and in fact impacts the empirical
determination of the latter.4 It is now clear, both from empirical evidences and analytically from the discussion on Eq. (6),
that recurrence intervals have a long memory. In dynamic terms, this means that their occurrences show some clustering.
The natural question is then: ‘‘Conditionally on an observed recurrence time, what is the probability distribution of the next
one?’’ This probability of observing an interval τ ′ immediately following an observed recurrence time τ is

P[Xτ+τ ′ > X (+), Xτ+[[1;τ ′[[ < X (+)
|Xτ > X (+), X[[1;τ [[ < X (+), X0 > X (+)

]. (9)

Please see Appendix for a detailed derivation of this equation.
Again, flipping the ‘>’ to ‘<’ allows to decompose it as

Cτ−1;τ ′−1 − Cτ ;τ ′−1 − Cτ−1;τ ′ + Cτ ;τ ′

Cτ−1 − 2Cτ + Cτ+1
−

π (τ + τ ′)
π (τ )

,

where the (τ + τ ′)-points probability

Cτ ;τ ′(p) = F[[0;τ+τ ′]]\{τ }(F−1(p), . . . , F−1(p))

shows up. Of course, this exact expression has no practical use, again because there is no hope of empirically measuring
any many-points probabilities of extreme events with a meaningful signal-to-noise ratio. We rather want to stress that
non-linear correlations and multi-points dependences are relevant, and that a characterization of clustering based on the
autocorrelation of recurrence intervals is an oversimplified view of reality.

3. Discussions

The exact universality of the mean recurrence interval imposes a natural scale in the system. A scaling relation in the
distribution of such recurrences is only possible in the absence of any other characteristic time. When such additional
characteristic times are present (typically in the non-linear correlations), the rescaling must be performed with a scale-
dependent renormalization, in the spirit of

π (τ ) =
1
σπ

g
(

τ − ⟨τ ⟩

σπ

)
, (10)

where σπ is defined in Eq. (8) and does contain information about the dependence structure. Then in some cases where σπ

embeds all the dependence of the underlying process, the scaling (10) might hold, at least approximately (see e.g. Fig. 1(a)),
even in the presence of several scales, as the recurrence times corresponding to the different regimeswould be renormalized
accordingly.

We stress that recurrences are intrinsically multi-points objects related to the non-linear dependences in the underlying
time-series. As such, their autocorrelation is not a reliable measure of their dynamics, for their conditional occurrence
probability is much history dependent. We have reported elsewhere [13] more properties of recurrence times and the
statistics of other observables (waiting times, cluster sizes, records, aftershocks) in light of their description in terms of
the diagonal copula. We hope that these studies can shed light on the n-points properties of the process by assessing the
statistics of simple variables rather than positing an a priori 2-points correlation structure and deriving a corresponding
recurrence times distribution.
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Appendix

Detailed derivation of Eq. (6)

π (τ ) = P[Xτ > X (+), X[[1;τ [[ < X (+)
|X0 > X (+)

].

4 Distribution testing for π (τ ) involving Goodness-of-fit tests [31,32] should be discarded because those are not designed for dependent samples and
rejection of the null cannot be relied upon. See Ref. [12] for an extension of GoF tests when some dependence is present.
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After a simple algebraic transformation flipping all ‘>’ signs to ‘<’, it can be written in the language of copulas as:

π (τ ) =
P[Xτ > X (+), X[[1;τ [[ < X (+)

; X0 > X (+)
]

P[X0 > X (+)]

=
P[X[[1;τ [[ < X (+)

]

p+

−
P[Xτ < X (+), X[[1;τ [[ < X (+)

]

p+

−
P[X[[1;τ [[ < X (+)

; X0 < X (+)
]

p+

+
P[Xτ < X (+), X[[1;τ [[ < X (+)

; X0 < X (+)
]

p+

π (τ ) =
Cτ−1(1 − p+) − 2 Cτ (1 − p+) + Cτ+1(1 − p+)

p+

.

Detailed derivation of Eq. (9)

The probability of observing an interval τ ′ immediately following an observed recurrence time τ is

P[Xτ+τ ′ > X (+), Xτ+[[1;τ ′[[ < X (+)
|Xτ > X (+), X[[1;τ [[ < X (+), X0 > X (+)

]. (A.1)

Again, flipping the ‘>’ to ’<’ allows to decompose it as

P[Xτ+k < X (+), Xτ > X (+), Xn < X (+), X0 > X (+), 1 ≤ n < τ, 1 ≤ k < τ ′
]

P[Xn < X (+), X0 > X (+), 1 ≤ n < τ ] − P[Xn < X (+), X0 > X (+), 1 ≤ n ≤ τ ]

−
P[Xτ+k < X (+), Xτ > X (+), Xn < X (+), X0 > X (+), 1 ≤ n < τ, 1 ≤ k ≤ τ ′

]

P[Xn < X (+), X0 > X (+), 1 ≤ n < τ ] − P[Xn < X (+), X0 > X (+), 1 ≤ n ≤ τ ]

=
P[Xτ+k < X (+), Xτ > X (+), Xn < X (+), 1 ≤ n < τ, 1 ≤ k < τ ′

]

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

−
P[Xτ+k < X (+), Xτ > X (+), Xn < X (+), 0 ≤ n < τ, 1 ≤ k < τ ′

]

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

−
P[Xτ+k < X (+), Xτ > X (+), Xn < X (+), 1 ≤ n < τ, 1 ≤ k ≤ τ ′

]

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

+
P[Xτ+k < X (+), Xτ > X (+), Xn < X (+), 0 ≤ n < τ, 1 ≤ k ≤ τ ′

]

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

=
Cτ−1;τ ′−1(p) − Cτ+τ ′−1(p)

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)
−

Cτ ;τ ′−1(p) − Cτ+τ ′ (p)
Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

−
Cτ−1;τ ′ (p) − Cτ+τ ′ (p)

Cτ−1(p) − 2Cτ (p) + Cτ+1(p)
+

Cτ ;τ ′ (p) − Cτ+τ ′+1(p)
Cτ−1(p) − 2Cτ (p) + Cτ+1(p)

=
Cτ−1;τ ′−1 − Cτ ;τ ′−1 − Cτ−1;τ ′ + Cτ ;τ ′

Cτ−1 − 2Cτ + Cτ+1
−

π (τ + τ ′)
π (τ )

,

where

Cτ ;τ ′(p) = F[[0;τ+τ ′]]\{τ }(F−1(p), . . . , F−1(p)).
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