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Abstract. We consider a simple model of a closed economic system where the total money is conserved and
the number of economic agents is fixed. Analogous to statistical systems in equilibrium, money and the
average money per economic agent are equivalent to energy and temperature, respectively. We investigate
the effect of the saving propensity of the agents on the stationary or equilibrium probability distribution of
money. When the agents do not save, the equilibrium money distribution becomes the usual Gibb’s distri-
bution, characteristic of non-interacting agents. However with saving, even for individual self-interest, the
dynamics becomes cooperative and the resulting asymmetric Gaussian-like stationary distribution acquires
global ordering properties. Intriguing singularities are observed in the stationary money distribution in the
market, as functions of the marginal saving propensity of the agents.

PACS. 87.23.Ge Dynamics of social systems – 05.90.+m Other topics in statistical physics,
thermodynamics, and nonlinear dynamical systems – 89.90.+n Other topics of general interest to physicists

1 Introduction

The interacting dynamical nature of any economic sec-
tor composed of many cooperatively interacting agents,
has many features in common with the statistical physics
of interacting systems. In fact, economists like Pareto in-
vestigated the power law properties of the wealth distri-
butions more than a century ago and Stigler studied the
market fluctuations by employing Monte Carlo methods
more than thirty years back [1]. Motivated by these inves-
tigations, many efforts are being made recently to apply
the statistical physics methods to various economic prob-
lems. A major part of the recent efforts has gone in inves-
tigating the nature of fluctuations and their distributions
in the stock markets [2]. We believe, however, a fundamen-
tal dynamics occurs in the money market, which affects
strongly the dynamics of other sectors in the economy. An
understanding of the statistical mechanics of the money
market is therefore essential, and some of its features are
very intriguing [3,4]. Dragulescu and Yakovenko [5] have
shown very recently that for any arbitrary and random
sharing but locally conserving money transaction between
any two agents in a market, the money distribution goes
to the equilibrium Gibb’s distribution of statistical me-
chanics: P (m) = (1/T ) exp(−m/T ) where T = M/N , the
average money per agent in the market (M is the total
money of N agents in the market). This equilibrium dis-
tribution is extremely robust and various kinds of inter-
agent monetary transactions, which locally conserve the
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total money, lead to the Gibb’s probability distribution
satisfying P (m1)P (m2) = P (m1 +m2). A major achieve-
ment of this study [5] has been the precise identification
of the temperature T as the average money per agent
in the market. This is due to the fact that the proba-
bility distribution is normalized and the total money is
conserved. This precise identification had been missing in
many of the previous attempts [3,4] though the identifi-
cation from fiscal policy considerations was indeed very
close [3]. They had considered a market consisting of N
agents, where initially each one gets any arbitrary share
mi of the total money M in the market (

∑N
i=1mi = M ; M

and N fixed). The “trade” dynamics goes as follows. Se-
lect any two arbitrary agents i and j with money mi and
mj, respectively. These two agents then exchange their
money through some trade, keeping their total amount of
money mi+mj conserved and no debt is allowed (mi ≥ 0
at any stage of the trade). There is no other restriction
in the trade. Extensive numerical simulations show that
this and various modifications of trade, like multi-agent
transactions, etc., all lead to the robust Gibb’s distribu-
tion, independent of the initial distribution the market
starts with. So, most of the agents end-up in this mar-
ket with very little money! Supply of more money in the
market (increasing T ) can increase the width of the dis-
tribution, but the most probable money for any agent
in the market remains zero. It may be mentioned that
Ispolatov et al. had studied earlier the (non-equilibrium)
wealth distributions in various asset exchange models [6]
where the trade dynamics do not have time-reversal sym-
metry. Of course, the study of Levy and Solomon [7]
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indicates a power law distribution for the wealth in re-
alistic (possibly non-equilibrium) markets or societies.

Although the model of Dragulescu and Yakovenko [5]
is a simple and interesting one to start with, a very nat-
ural ingredient for any realistic economic agent is missing
in the model: no economic agent trades with the entire
money he or she possesses without saving a part of it;
saving propensity is too natural a tendency for any eco-
nomic agent [8]. This saving propensity of course varies
from agent to agent and even with the accumulation of
wealth of a single agent. There are also country-wise vari-
ations of this saving propensity. We note that the fraction
of savings λ, called the “marginal propensity to save” by
economists [8], remains fairly constant, independent of the
agents. We have taken it to be a constant in the model
considered here. We show that in presence of this saving
factor λ(6= 0) the money market becomes truly cooper-
ative in nature and “critical behaviour” [9] sets in. The
multiplicative property of the Gibb’s distribution P (m),
discussed above, was responsible for the absence of any
cooperative feature of the statistics for λ = 0. Once the
local or individual measure of saving propensity is intro-
duced (λ 6= 0), a global order emerges in the entire money
market, giving a non-vanishing most probable money for
each agent in the market and nontrivial critical behaviour
of the resulting statistics in the equilibrium.

2 Model and simulation results for money
distribution

We again consider a simple model of the closed economic
system where the total amount of money M is conserved
and the number of economic agents N is fixed. Each eco-
nomic agent i, which may be an individual or a corporate,
possesses money mi. An economic agent can exchange
money with any other agent through some trade, keeping
the total amount of money of both the agents conserved.
We assume that each economic agent saves a fraction λ
of its money mi before trading. We again assume that an
agent’s money must always be non-negative and therefore
no debt is permitted. Let us now consider that an arbi-
trary pair of agents i and j get engaged in a trade so that
their money mi and mj change by amounts∆mi and ∆mj

to become m′i and m′j , where ∆mi is a random fraction of
(1− λ)(mi +mj) and ∆mj is the rest of it. Conservation
of the total money in each trade is ensured, as earlier.

We performed computer simulations with fixed num-
ber of agents N and total money M = NT . Most of our
simulation results are for N = 500 and T = 100. However,
we checked results for different N values (250 ≤ N ≤
1 000) to check finite size effects, etc., and with differ-
ent T values (upto 10 000). Initially we divided the to-
tal money M amongst N agents equally so that mi =
M/N = T for all i. We chose a fixed value of λ between
zero and unity and investigated its effects on the equi-
librium distribution of money P (m) in the market, giv-
ing the (normalized) number of agents P with money m.
We choose randomly two agents i and j having money
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Fig. 1. The stationary money distribution P (m) versus money
m for different saving propensity factor λ (N = 500, T = 100).
The inset shows the same for different N and T at two fixed
values of λ. The superposition of data indicates the absence of
finite size effects and the temperature independence.

mi and mj , respectively. Then ∆mi = ε(1− λ)(mi +mj)
and ∆mj = (1− ε)(1− λ)(mi +mj), where ε is a random
number between zero and unity. Then m′i = λmi + ∆mi

and m′j = λmj + ∆mj after the trade. Alternatively,
this trade can also be viewed as mi → mi

′, mj → mj
′

where mi
′ = mi − ∆m, mj

′ = mj + ∆m with ∆m =
(1−λ)[mi− ε(mi+mj)]. This can be checked by straight-
forward substitution. These trades were repeated for large
number of arbitrary choices of pairs of agents; each of these
random choices of pairs is considered as one trade and con-
sequently one time unit. The typical time upto which we
run this algorithm is above 5 000 (sometimes upto 50 000
for larger λ). The probability distribution was determined
after every 50 time steps till a stationary distribution was
obtained. We then took an average over 2 000 such sta-
tionary distributions to obtain a smooth distribution. We
checked that the equilibrium distribution obtained is again
extremely robust and does not depend at all on the initial
distribution of money in the market. We investigated the
nature of the equilibrium distribution P (m) for various
values of λ (0 ≤ λ < 1). Apart from the stationary distri-
bution, we also investigated the “relaxation” behaviour [9]
of the distributions and obtained the time variations of
P1 ≡ P (m = T ) till a steady behaviour was found. We
define the relaxation time τR as the earliest time where
P1(t) becomes practically independent of time.

The results for the equilibrium distribution P (m) are
shown in Figure 1, for some values of λ. The inset shows
that the equilibrium distribution is independent of the
market size N and the average money in the market or
temperature T . The real money exchanged randomly in
any trade is less than the total money, because of the sav-
ing by each agent. This destroys the multiplicative prop-
erty of the distribution P (m) (seen earlier for λ = 0) and
P (m) changes from the Gibb’s form to the asymmetric
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Fig. 2. Relaxation of the distribution: P1(t) versus the time t
(number of trades) for different λ. Because of extremely slow
relaxation, we show in the ln t scale for the later stage only.
The vertical arrows indicate the relaxation time τR. The inset
shows the typical variation of τR with λ; τR diverges as λ→ 1.

Gaussian-like form as soon as a finite λ is introduced. The
λ = 0 case was practically a random noise dominating one
and therefore effectively a non-interacting market. Intro-
duction of a finite amount of saving (λ 6= 0), dictated by
individual self-interest, immediately makes the money dy-
namics cooperative and the global ordering (in the distri-
bution) is achieved. This kind of self-organization in the
money market, coming out of pure self-interest of each
agent, is reminiscent of the “invisible hand” effect [8,10]
in the “free market” suggested originally by Adam Smith
in 1776.

The relaxation behaviour of the distribution is shown
in Figure 2, where the time variation of P1(t) for different
values of λ is shown. Since mi/T = 1 for all i to start
with, P1(t) starts falling from unity in all the cases (not
shown in Fig. 2). After some initial rapid decay, we see
an extremely slow spin-glass type [4,9] (ln t) relaxation
behaviour. The inset shows the typical variation of the re-
laxation time τR with λ. The dynamics obviously becomes
slower with increasing λ and τR seems to diverge as λ ap-
proaches unity. Precisely at λ = 1, the dynamics of course
stops.

An important feature of this humped distribution
P (m) at any non-vanishing λ is the variation of the most
probable money mp(λ) ( where P (m) becomes maximum)
of the agents. As discussed before, mp = 0 for λ = 0
(Gibb’s distribution) and most of the economic agents
in the market end-up losing most of their money. How-
ever, even with pure self-interest of each agent for saving
a factor λ of its own money at any trade, a global feature
emerges: the entire market ends-up with a most-probable
money mp(λ). This mp(λ) shifts in an interesting manner
from mp = 0 (for λ = 0) to mp → T (for λ→ 1). We find
that initially, for small λ, mp(λ) varies very closely as λ1/2

and then it crosses over at λ = λc ' 0.45 to λ1/3 varia-
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Fig. 3. The variation of the most probable money mp of an
agent (peak position of the equilibrium distribution P (m)) as
a function of λ. The dotted and dashed curves correspond to
λ1/2 and λ1/3 respectively. The crossover point (λc) is indicated
by the vertical arrow. The inset shows that the probability P0

of agents with zero money also first disappears at almost the
same point (λc) indicated by the vertical arrow.

tion. This is shown in Figure 3, where the curves for λ1/2

and λ1/3 are also indicated. We do not have any idea why
this crossover in the exponent for λ occurs at any finite
λ (' 0.45). Also the exponents 1/2 and 1/3 are very in-
triguing. We checked that this crossover point is perhaps
also the point where the probability of an agent having
zero money P0 ≡ P (m = 0) just disappears, as shown
in the inset of Figure 3. The half-width ∆mp and the
peak height Pmp of the equilibrium distribution, which
scale practically as (1 − λ)1/2 and (1 − λ)−1/2 respec-
tively (see Fig. 4), do not have any irregularity there.
In fact, no other property of the equilibrium distribution
P (m) has any irregularity at λc. It may be mentioned that
Ispolatov et al. also observed a singularity in the power
law of non-equilibrium growth distribution of wealth in
their multiplicative asset exchange model having broken
time-reversal symmetric trade dynamics.

We noted that although the total distribution assumes
some global cooperative feature, each individual’s money
mi fluctuates randomly. Figure 5 shows the time varia-
tion of the money of an arbitrarily chosen individual in
the market for two different values of λ. The inset shows
the variation of the time-averaged money 〈mi〉 of the agent
and its fluctuation ∆mi ≡

√
〈(mi − 〈mi〉)2〉 with λ after

relaxation (t > τR). Since the total money is conserved,
〈mi〉 remains constant (= T ) here, while ∆mi goes down
with λ as (1− λ). This is because at any time the agents
keep a fixed fraction of their individual money and re-
ceive a random fraction of the money traded proportional
to (1− λ).
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Fig. 4. The variation of the distribution half-width ∆mp as

function of λ. The dashed curve corresponds to
√
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The inset shows the peak height Pmp as function of λ. The
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3 Summary and discussion

We thus considered here a very simple model of money
market where the total money M and the number of
agents N is fixed. Each pair of arbitrarily chosen agents
in the market exchange money with each other through a
trade (each trade considered as one time unit). During the
trade, each agent saves a fraction λ of its own money at
that time and exchanges randomly out of the remaining
money, conserving the total amount of money and not al-
lowing any debt. We find that for λ = 0, the market effec-
tively becomes non-interacting and, no matter what initial
distribution the agents start with, the resulting money dis-
tribution becomes the equilibrium Gibb’s distribution [5],
where most of the agents in the market end-up with very
little money. For any non-vanishing λ, the equilibrium dis-
tribution becomes the asymmetric Gaussian-like with the
most probable money mp (corresponding to the peak in
P (m)) shifting away from m = 0 with increasing λ. This
global feature, coming out of the individual self-interest of
saving a part of its own money, can be considered to be a
demonstration of the self-organization in the market sug-
gested long ago by Adam Smith (“invisible hand” [8,10]).
Apart from this we find intriguing singularities appear-
ing in the equilibrium distribution P (m): mp ∼ λν where
ν = 1/2 for λ < λc (' 0.45) and ν = 1/3 for λc < λ < 1.
Also, ∆mp ∼ (1− λ)1/2 and Pmp ∼ (1− λ)−1/2.

These singularities in the equilibrium distribution
come obviously from the cooperative nature of the mar-
ket interactions induced by the saving propensity of the
agents. It may be mentioned that while such singular be-
haviour in the equilibrium money distribution is very nat-
ural here, in the corresponding physical (gas) system of
Newtonian particles one gets regular distributions, e.g.,
the Gibb’s distribution (or for that matter, Bose or Fermi
distributions for quantum particles) and never any singu-
larity, because of the absence of any physical equivalent
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Fig. 5. Time variation of money of an individual agent mi

for two different values of λ. The inset shows the variations of
〈mi〉 and its fluctuations ∆mi as functions of λ.

of the “saving” factor there. We thus believe, while reg-
ular distributions are common for minimally interacting
physical many-body systems in equilibrium, singular dis-
tributions are typical of any working model of the markets.
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