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We study a variant of the Cont–Bouchaud model, which utilizes the percolation approach
of multi-agent simulations of the stock market fluctuations. Here, instead of considering

the relative price change as the difference of the total demand and total supply, we con-
sider the relative price change to be proportional to the “relative” difference of demand
and supply (the ratio of the difference in total demand and total supply to the sum of
the total demand and total supply). We then study the probability distribution of the
price changes.
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1. Introduction

Statistical physics contains the methods for extracting the average properties of a
macroscopic system (matter in bulk) from the microscopic dynamics of the systems.
It also gives us precise knowledge of the fluctuations (above these averages) of
these quantities.1 Scaling laws, experimental or theoretical, have been of special
interests to physicists. Hence, physicists are trying to employ these methods to
study the fluctuations of the stock markets (the study of which began with the
work of Louis Bachelier in 19002) as well. With access to large sets of data from
financial markets, an extensive search for such scaling laws has begun recently.3

Fluctuations over the average, say in some stock prices, are of immense interest to
the economists also. The nature of these fluctuations, whether random or otherwise,
are of extreme importance. Stigler4 studied the market fluctuations by employing
Monte Carlo methods more than thirty years back. The fluctuations are believed
to follow a Gaussian distribution for long time intervals. Mandelbrot5 was first to
observe a clear departure from Gaussian behavior for these fluctuations for short
time intervals. There have been various explanations and descriptions for it, ranging
from power laws, exponentials to multi-fractal behavior.
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The percolation6 approach of Cont and Bouchaud7 is one of the simplest of the
numerous multi-agent simulations of the stock market fluctuations. Monte Carlo
simulations of the above model made at the percolation threshold, show power-
law “fat” tails for short time intervals and exponential truncation for longer time
intervals. The model is also consistent with the weak correlations between successive
changes of price and strong correlations between successive values of changes of
price. There has been various variants of the Cont–Bouchaud model.8 Here, we
study another variant of the Cont–Bouchaud model where instead of considering
the relative price change coming from the difference of the total demand and total
supply, we consider the relative price change to be proportional to the “relative”
difference of demand and supply (i.e., the ratio of the difference in demand and
supply to the sum of demand and supply).

2. The Model and Results

We human beings are “social animals” and hence like to stay together and are
influenced by others at all spheres of life. At most occasions, we form “clusters”,
which for simplicity, will be considered as random. As in the case of percolation
theory of random graphs, the traders are assumed to just form random clusters
and share their opinions. The history of the price changes and the limitations in
the disposable capital of each trader are ignored.

The original Cont–Bouchaud model7 considered the mean-field limit of infinite-
range interactions instead of the usual nearest-neighbor percolation on lattices.6

In the variant models,8 the sites of a d-dimensional lattice are randomly occupied
with probability p and empty with probability (1 − p) and the occupied nearest-
neighbors form clusters. Each cluster containing Nt traders decides randomly, to
buy (with probability a), sell (also with the same probability a), or to remain
inactive (with probability 1 − 2a). So far, the relative change of the price was
considered to be proportional to the difference between the total demand and the
total supply. Hence, for any time step ∆t, we first find the existing clusters and the
number ns of clusters, each containing s traders. Then each cluster randomly decides
whether to buy, sell or remain inactive with the above mentioned probabilities. The
parameter a is called the “activity” and the increase in activity is equivalent to the
increase in the time unit, since a is the fraction of traders, which are active per
unit time. Thus small a correspond to small time intervals and large a (with the
maximum of 0.5) correspond to large time intervals. Then, the relative price change
for one time step is considered proportional to the difference of the total demand
and total supply:

R(t) = lnP (t+ ∆t)− lnP (t) ∝
∑
s

nbuy
s s−

∑
s

nsell
s s , (1)

where the constant of proportionality is taken to be unity.
If we take one time step ∆t to be very small so that only one cluster of traders

can trade during this time interval (the number of clusters trading in one time step
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N = aNt ∼ 1), then the probability distribution P (R) is completely symmetric
about zero (as in real stock markets) and just follows the distribution ns of clusters.
The distribution, right at p = pc is ns ∝ 1/sτ with 2 < τ < 2.5 in two to infinite
dimensions.6 If the time step ∆t is large so that all the traders can trade in each
time step (N ∼ Nt), then the probability distribution P (R) is closer to a Gaussian.
When the time step is in the intermediate range so that 1 � N � Nt the price
changes are bell-shaped with power-law tails. This crossover to Gaussian behavior
with the variation of a is observed in reality also.9

In our model, the relative price change is proportional to the “relative” difference
of demand and supply, i.e., the ratio of the difference in demand and supply, and
the grand total of demand and supply:

R(t) = lnP (t+ ∆t)− lnP (t) ∝
∑

s n
buy
s s−

∑
s n

sell
s s∑

s n
buy
s s+

∑
s n

sell
s s

, (2)

where the constant of proportionality is again taken to be unity.
Our computer simulations first distribute sites randomly on the square lattice

of dimensions L × L at the percolation threshold (p = pc = 0.592746) and then
determine the clusters. For each time step ∆t, we allow each cluster to decide
randomly whether to trade or remain inactive. The trading clusters then again
randomly decide to buy or sell, and then Eqs. (1) or (2) determine the relative
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Fig. 1. Histogram of relative price changes plotted in the linear–logarithmic scale, obtained from
computer simulations made at the percolation threshold for 5000 square lattices of size 1001×1001,
1000 time intervals and activity 0.01.
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price change. We average over many lattice configurations to find the probability
distribution P (R). Programs in C and FORTRAN, based on the Hoshen–Kopelman
algorithm in two dimensions (where we have considered site percolation with free
boundary conditions) are available from the author.

The histograms of price changes, which we get when the relative price changes
are determined according to Eq. (1) and those according to Eq. (2) are shown in
Fig. 1, with pc = 0.592746. In the Cont–Bouchaud model, we also see a crossover
from a power-law to a bell-shaped behavior (within the accuracy of the computer
simulations) for increase in activity a (not shown in the figure) showing its similar-
ity with real stock markets. In this model, since the magnitude of the relative price
change always lies between zero and unity, we observe a sharp cut-off in the his-
togram, unlike in real markets. Thus the original Cont–Bouchaud model is superior
to this model, in this respect.

3. Discussions and Summary

We study a variant of the Cont–Bouchaud model: the relative price changes are
defined as the ratio of the difference in demand and supply to the sum of demand
and supply,

R(t) =
∑
s n

buy
s s−

∑
s n

sell
s s∑

s n
buy
s s+

∑
s n

sell
s s

,

where the constant of proportionality is taken to be unity. We also present some
of the previous results of a variant of the Cont–Bouchaud model for comparison.
We observe a sharp cut-off in the histogram for this model, unlike in real markets,
which shows that the original Cont–Bouchaud model is superior to this model in
this respect. This model too could be made more realistic, e.g., including the history
of the price changes.
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