

STATISTICAL PHYSICS OF LIQUIDS AT FREEZING AND BEYOND

Exploring important theories for understanding freezing and the liquid–glass transition, this book is useful for graduate students and researchers in soft-condensed-matter physics, chemical physics, and materials science. It details recent ideas and key developments, providing an up-to-date view of current understanding.

The standard tools of statistical physics for the dense liquid state are covered. The freezing transition is described from the classical density-functional approach. Classical nucleation theory as well as applications of density-functional methods for nucleation of crystals from the melt are discussed, and compared with results from computer simulation of simple systems. Discussions of supercooled liquids form a major part of the book. Theories of slow dynamics and the dynamical heterogeneities of the glassy state are presented, as well as nonequilibrium dynamics and thermodynamic phase transitions at deep supercooling. Mathematical treatments are given in full detail so that readers can learn the basic techniques.

SHANKAR PRASAD DAS is Professor of Physics at Jawaharlal Nehru University, New Delhi. During the course of his career, he has made significant contributions to the field of slow dynamics in supercooled liquids and the glass transition.

STATISTICAL PHYSICS OF LIQUIDS AT FREEZING AND BEYOND

Shankar P. Das Jawaharlal Nehru University New Delhi, India

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo, Mexico City

> > Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521858397

© S. Das 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Das, Shankar P. (Shankar Prasad), 1959-Statistical physics of liquids at freezing and beyond / Shankar P. Das.

p. cm. ISBN 978-0-521-85839-7 (hardback)

Liquids-Thermal properties. 2. Crystallization-Mathematical models. 3. Nonequilibrium thermodynamics. 4. Statistical thermodynamics. I. Title.

 QC145.4.T5D37 2011

530.4'24-dc22

2010046159

ISBN 978-0-521-85839-7 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

I dedicate this book to my parents,

Sudhir Kumar Das and Gita Rani Das

Contents

	Prefa	ce		page xiii
	Ackno	owledgen	nents	xvi
1	Statis	Statistical physics of liquids		
	1.1	Basic statistical mechanics		3
		1.1.1	Thermodynamic functions	3
		1.1.2	The classical N-particle system	6
		1.1.3	The BBGKY hierarchy equations	7
		1.1.4	The Boltzmann equation	9
	1.2	Equilib	prium properties	11
		1.2.1	The Gibbs <i>H</i> -theorem	12
		1.2.2	The equilibrium ensembles	14
		1.2.3	The static structure factor	19
		1.2.4	Integral equations for $g(r)$	24
	1.3	Time c	orrelation functions	36
		1.3.1	The density correlation function	38
		1.3.2	The self-correlation function	41
		1.3.3	The linear response function	47
	1.4	1.4 Brownian motion		50
		1.4.1	The Langevin equation	50
		1.4.2	The Stokes–Einstein relation	53
Appendix to Chapter 1		55		
	A1.1	The Gibbs inequality		55
	A1.2	The for	55	
	A1.3	Browni	Brownian motion	
		A1.3.1	The noise correlation	56
		A1.3.2	Evaluation of the integrals	57
2	The f	The freezing transition		
	2.1		nsity-functional approach	58
		2.1.1	A thermodynamic extremum principle	60

viii	viii Contents			
		2.1.2	An approximate free-energy functional	64
		2.1.3	The Ramakrishnan–Yussouff model	68
	2.2	Weigh	ted density functionals	72
		2.2.1	The modified weighted-density approximation	75
		2.2.2	Gaussian density profiles	76
		2.2.3	The hard-sphere system	78
	2.3	Funda	mental measure theory	85
		2.3.1	Density-independent weight functions	86
		2.3.2	The free-energy functional	88
	2.4	Applic	cations to other systems	90
		2.4.1	Long-range interaction potentials	91
		2.4.2	The solid–liquid interface	99
Apper	ndix to	Chapte	r 2	105
	A2.1	Correl	ation functions for the inhomogeneous solid	105
	A2.2	The R	amakrishnan-Yussouff model	106
	A2.3	The w	eighted-density-functional approximation	109
	A2.4	The m	odified weighted-density-functional approximation	113
	A2.5	The G	aussian density profiles and phonon model	115
3	Cryst	al nucl	eation	117
	3.1		cal nucleation theory	117
		3.1.1	The free-energy barrier	118
		3.1.2		121
		3.1.3	Heterogeneous nucleation	129
	3.2	A sim	ple nonclassical model	131
		3.2.1	The critical nucleus	133
		3.2.2	The free-energy barrier	134
	3.3	The de	ensity-functional approach	137
		3.3.1	The square-gradient approximation	137
		3.3.2	The critical nucleus	141
		3.3.3	The weighted-density-functional approach	145
	3.4	Comp	uter-simulation studies	150
		3.4.1	Comparisons with CNT predictions	152
		3.4.2	The structure of the nucleus	155
Apper	ndix to	Chapte	r 3	160
	A3.1	The sc	chematic model for nucleation	160
		A3.1.1	Critical nucleus	160
		A3.1.2	2 The free-energy barrier	161
	A3.2		xcess free energy in the DFT model	162
4	The supercooled liquid			164
	4.1	_	quid–glass transition	164
		4.1.1	Characteristic temperatures of the glassy state	165

			Contents	ix
		4.1.2	The free-volume model	170
		4.1.3	Self-diffusion and the Stokes–Einstein relation	171
	4.2	Glass for	rmation vs. crystallization	175
			The minimum cooling rate	176
			The kinetic spinodal and the Kauzmann paradox	177
	4.3		lscape paradigm	181
		4.3.1	The potential-energy landscape	182
		4.3.2	The free-energy landscape	188
	4.4	Dynamic	cal heterogeneities	192
		4.4.1	Computer-simulation results	193
		4.4.2	Dynamic length scales	198
5	Dyna	mics of co	ollective modes	204
	5.1	Conserv	ation laws and dissipation	205
		5.1.1	The microscopic balance equations	205
		5.1.2	Euler equations of hydrodynamics	207
		5.1.3	Dissipative equations of hydrodynamics	209
		5.1.4	Tagged-particle dynamics	211
		5.1.5	Two-component systems	212
	5.2	Hydrody	ynamic correlation functions	215
		5.2.1	Self-diffusion	217
		5.2.2	Transport coefficients	218
	5.3	Linear fl	luctuating hydrodynamics	225
		5.3.1	The generalized Langevin equation	225
		5.3.2	The liquid-state dynamics	236
	5.4	Hydrody	ynamics of a solid	246
Appendix to Chapter 5		260		
	A5.1	The mic	roscopic-balance equations	260
		A5.1.1	The Euler equations	263
		A5.1.2	The entropy-production rate	264
	A5.2	The seco	ond fluctuation–dissipation relation	269
6	Nonli	near fluc	tuating hydrodynamics	271
	6.1	Nonlinea	ar Langevin equations	271
		6.1.1	Coupling of collective modes	271
		6.1.2	Nonlinear Langevin equations	274
	6.2	The com	npressible liquid	287
		6.2.1	The one-component fluid	287
		6.2.2	The nonlinear diffusion equation	293
			A two-component fluid	295
			The solid state	300
	6.3	Stochast	tic balance equations	303
			Smoluchowski dynamics	303

X			Contents	
		6.3.2	Fokker–Planck dynamics	308
Appe	ndix to	Chapte	r 6	310
	A6.1	The co	parse-grained free energy	310
7	Reno	rmaliza	ation of the dynamics	318
	7.1		fartin–Siggia–Rose theory	319
		7.1.1	The MSR action functional	320
	7.2	The co	ompressible liquid	327
		7.2.1	MSR theory for a compressible liquid	328
		7.2.2	Correlation and response functions	330
	7.3	Renor	malization	334
		7.3.1	Fluctuation-dissipation relations	335
		7.3.2	Nonperturbative results	339
		7.3.3	One-loop renormalization	343
Appe	ndix to	Chapte	r 7	348
	A7.1	The Ja	350	
	A7.2	The M	ISR field theory	351
	A7.3	Invaria	ance of the MSR action	355
	A7.4	The m	emory-function approach	357
		A7.4.1	The projection-operator method	358
		A7.4.2	2 The mode-coupling approximation	361
8	The e	rgodic-	-nonergodic transition	363
	8.1	_	-coupling theory	363
		8.1.1	The schematic model	365
		8.1.2	Effects of structure on dynamics	369
		8.1.3	Tagged-particle dynamics	376
		8.1.4	Dynamical heterogeneities and MCT	383
		8.1.5	Linking DFT with MCT	388
		8.1.6	Dynamic density-functional theory	391
	8.2	Evider	nce from experiments	400
		8.2.1	Testing with schematic MCT	400
		8.2.2	Glass transition in colloids	406
		8.2.3	Molecular-dynamics simulations	407
		8.2.4	Discussion	409
	8.3	Ergodi	icity-restoring mechanisms	411
		8.3.1	Ergodic behavior in the NFH model	412
		8.3.2	The hydrodynamic limit	414
		8.3.3	Numerical solution of NFH equations	417
	8.4	Spin-g	class models	419
		8.4.1	The <i>p</i> -spin interaction model	420
		8.4.2	MCT and mean-field theories	426

		Contents	xi
Appe	endix to	Chapter 8	430
	A8.1	Calculation of the spring constant	430
	A8.2	Field-theoretic treatment of the DDFT model	432
	A8.3	The one-loop result for $\Sigma_{\hat{v}\hat{v}}(0,0)$	442
9	The n	443	
	9.1	The nonequilibrium state	443
		9.1.1 A generalized fluctuation–dissipation relation	443
		9.1.2 Computer-simulation studies	444
	9.2	The effective temperature	449
		9.2.1 The phenomenological approach	451
		9.2.2 A simple thermometer	451
	9.3	A mean-field model	456
		9.3.1 The mode-coupling approximation	459
		9.3.2 The FDT regime	460
		9.3.3 The aging regime	465
		9.3.4 Quasi-ergodic behavior	469
	9.4	Glassy aging dynamics	471
		9.4.1 Thermalization	471
		9.4.2 Aging dynamics: experiments	473
Appe	endix to	Chapter 9	479
	A9.1 The energy of the oscillator		479
	A9.2	Evaluation of integrals	481
		A9.2.1 Integral I_R for the FDT solution	481
		A9.2.2 Integrals for the aging solution	482
10	The thermodynamic transition scenario		486
	10.1	The entropy crisis	486
		10.1.1 The Adam–Gibbs theory	487
		10.1.2 Dynamics near $T_{\rm K}$	488
	10.2	First-order transitions	490
		10.2.1 Metastable aperiodic structures	491
		10.2.2 Random first-order transition theory	494
	10.3	Self-generated disorder	498
		10.3.1 Effective potential and overlap functions	498
		10.3.2 A model calculation	501
	10.4	Spontaneous breaking of ergodicity	505
		10.4.1 The replica method for self-generated disorder	507
		10.4.2 Free energy of the Replicated liquid	509
		10.4.3 An example: The ϕ^4 model	514
	10.5	The amorphous solid	519
		10.5.1 The Mézard–Parisi model	522

xii		
Appendix to Chapter 10		531
A10.1 Matrix identity		531
A10.2 Matrix identity	II	532
A10.3 Computation of	f the vibrational contribution \mathcal{I}_{v}	533
A10.4 Computation of	$\{\operatorname{Tr}\ln\mathcal{M}\}_*$	536
References		540
Index		558

Preface

This book is aimed at teaching the important concepts of the various theories of statistical physics of dense liquids, freezing, and the liquid–glass transition. Both thermodynamic and time-dependent phenomena relating to transport properties are discussed. The standard tools of statistical physics of the dense liquid state and the associated technicalities needed to learn them are included in the presentation. Details of some of the calculations have been included, whenever needed, in the appendices at the ends of chapters. I hope this will make the book more accessible to beginners in this very active field of research. The book is expected to be useful for graduate students and researchers working in the area of soft-condensed-matter physics, chemical physics, and the material sciences as well as for chemical engineers.

We now give a brief description of what is in the book. The first chapter reviews the basics of statistical mechanics necessary for studying the physics of the liquid state. Key concepts of equilibrium and nonequilibrium statistical mechanics are presented. The topics covered here have been chosen keeping in mind the theories and concepts covered in the subsequent chapters of the book. Following this introductory chapter, we focus on the physics of liquids near freezing. In Chapter 2, we demonstrate how the disordered liquid state as well as the crystalline state of matter with long-range order can be understood in a unified manner using thermodynamic extremum principles. Our primary focus in discussing the freezing transition here is the classical density-functional approach using the density as the order parameter. The model is constructed from a basic statistical-mechanical description of the equilibrium liquid close to the freezing point. It predicts the location (in terms of thermodynamic parameters such as temperature and density) of the transformation into the crystalline states coming from the liquid side. This is in contrast to the traditional lattice-instability theories of melting of the solid state. The approach is termed microscopic since it uses the two-body interaction between the particles in the classical Hamiltonian as the starting point.

After introducing the model for the broken symmetric state in terms of the inhomogeneous density function, we analyze the process of transformation from one phase to another. As the disordered liquid is quenched to a lower temperature at which the stable equilibrium state would be a crystal, the metastable liquid transforms into the state with long-range order through a nucleation process. A model for this transformation using a

xiv Preface

purely thermodynamic approach is given in terms of the classical nucleation theory. The latter is an important idea that is also applied in a somewhat different context in understanding the deeply supercooled state. Next, extensions of the density-functional theories introduced in the previous chapter are applied to identify the critical nucleus formation in the melt. Comparisons of the theories of freezing and nucleation with corresponding computer-simulation results are discussed at every step. Simulating nucleation of the crystalline phase from the melt has always been difficult. In recent years special techniques have been developed to study the formation and structure of the critical nucleus. We discuss these developments in Chapter 3.

In Chapter 4, we begin considering the supercooled state, i.e., liquid kept at metastable equilibrium at temperatures beyond the freezing point. Competition between supercooling into a metastable state and the process of crystallization as well as the standard phenomenology of the glassy state are discussed here. The computer models of the liquid developed to study various aspects of the supercooled state are also described in this chapter. Concepts of dynamical heterogeneities and growing length scales associated with the supercooled liquid are introduced at this point.

Next we turn to the discussion of the microscopic theories of the slow dynamics which develops in the supercooled liquid as it is increasingly supercooled. We present the theoretical developments in this field starting from the basics. Hence three chapters have been devoted to introducing the reader to the rather involved formalism necessary for treating this topics. The first, Chapter 5, presents the formulation of the basic equations of hydrodynamics for a set of slow modes in the many-body system. The dissipative equations are constructed using phenomenological arguments, and linear transport coefficients are defined. We introduce here the idea of generalizing hydrodynamic equations to short length scales in the dense liquid. In Chapter 6, we discuss the formulation of the nonlinear fluctuating hydrodynamics for several model systems. These equations control the dynamics of a set of slow modes in a manner that includes collective effects from semi-microscopic length scales. In Chapter 7, we present methods for formulating a renormalized theory of the dynamics. The effects of the nonlinear coupling of the slow modes are obtained in a systematic manner by using diagrammatic methods of quantum field theory. This Martin-Siggia-Rose (MSR) field-theoretic model obtains the dynamic density correlation function in terms of renormalized transport coefficients, which are themselves expressed self-consistently in terms of dynamic correlation functions. A new approach to studying the complex behavior of the supercooled liquid started with the idea of a nonlinear feedback mechanism on its transport properties from the coupling of slowly decaying correlation functions. That the renormalized dynamics for a compressible liquid obtains this model in a natural way is demonstrated in Chapter 7. The formalism also facilitates the analysis of the full implications of the nonlinearities in the equations of motion on the asymptotic dynamics. Chapters 5, 6, and 7 are technical and may be skipped by those not interested in understanding the construction of the mathematical models for the dynamics in full rigor. Some simpler deductions of the basic mode-coupling model are also presented in an appendix.

Preface xv

The above renormalized model gives rise to the idea of an ergodic-nonergodic (ENE) transition in which the long-time limit of the density correlation function freezes. This ENE transition, its implications for the dynamics, and supporting evidence from experiments and simulation are discussed in full detail in Chapter 8. The possible role of ergodicity-restoring mechanisms and removal of the sharp ENE transitions follows thereafter. Finally, we make a critical evaluation of the mode-coupling theory for structural liquids and its link with models of dynamics for mean-field systems. Up to this point the discussion of the dynamics is only in terms of equilibrium correlations. In Chapter 9 we deal with the nonequilibrium aspects of the glassy state. We present the modification of the standard results of equilibrium statistical mechanics, such as the fluctuation-dissipation theorem and the concept of effective temperatures for the glassy state. Related computer-simulation studies are presented. Theoretical models of nonequilibrium dynamics in terms of mean-field spin models are also worked out. The relaxation time for the supercooled liquid increases drastically as it is supercooled and eventually vitrification occurs when the liquid behaves like a frozen solid. Apart from having a characteristic large viscosity, the supercooled liquid shows a discontinuity in specific heat due to freezing of the translational degrees of freedom in the liquid. The difference of the entropy of the supercooled liquid from that of the solid having only vibrational motion around a frozen structure represents the entropy due to large-scale motion and is called the configurational entropy S_c of the supercooled liquid. Theoretical analysis of the rapid disappearance of S_c with supercooling (the so-called "entropy crisis") is essential for our understanding of the physics of the glass transition. The connections between structure and dynamics and the possibilities of an underlying thermodynamic phase transition in the deeply supercooled liquid are discussed in the last chapter of the book.

Acknowledgements

I gratefully acknowledge Kyozi Kawasaki for many helpful discussions, support and exchange of views on important concepts. His work and ideas appear in several chapters of this book and have been an inspiration for the author. Discussions and associations with various scientists at different stages of my career have been useful experience and helped me in writing this book.

In particular I would like to mention A. Angell, B. Bagchi, J.L. Barrat, J.K. Bhattacharjee, C. Dasgupta, D. Dhar, J.W. Dufty, J.P. Dyre, M.H. Ernst, T.R. Kirkpatrick, R. Kühn, H. Löwen, F. Mezei, U. Mohanty, S.R. Nagel, T. Odagaki, T.V. Ramakrishnan, S. Ramaswamy, S. Sarkar, R. Schilling, Y. Singh, A. Solokov, A.K. Sood, J. Yeo, and S. Yip. During the course of writing this book I have benefited from discussions on various related topics with G. Biroli, C. Chakravarty, T. Engami, S. Franz, H. Hayakawa, B. Kim, V. Kumaran, A. Loidl, P. Lunkenheimer, K. Miyazaki, D. Reichman, S. Sastry, F. Sciortino, H. Tanaka, G. Tarajus, R. Yamamoto, and A. Yoshimori.

I acknowledge my colleagues R. Ramaswamy, A.K. Rastogi, and S. Sarakar for their support. I acknowledge all my students for their research which has been very much needed in writing this book. In particular I acknowledge help from my students L. Premkumar, M. Priya, B. Sen Gupta, and S. P. Singh in preparing some of the figures and the manuscript. I thank Mr. R. N. Saini for his help with the reproduction of the figures. Big thanks are due to little Bodhisattva Das for helping me to prepare the figure presented on the front cover of the book.

I am grateful to the authors and publishers who allowed figures from their publications to be used in the book. I am very thankful to Dr. Simon Capelin and Dr. Graham Hart from Cambridge University Press for allowing me time well beyond the initially agreed limit to finish writing this book. Lindsay Barnes, Laura Clark, S. Holt, M. Waddington, and Emma Walker of Cambridge University Press are acknowledged for their constant help, reminders, and patience – for keeping the project alive even though I kept missing deadlines repeatedly. Sehar Tahir is acknowledged for providing very useful help with LATEX and CUP style files.

The UGC Capacity-Build-up grant of JNU, the PURSE grant from DST, and the CSIR research grant 03(1036)/05/EMRII are acknowledged for financial support. I acknowledge the Institute for Molecular Sciences (IMS) in Okazaki, Japan for support during my visit

Acknowledgements

xvii

there in 2009–10. I am deeply grateful to Professor Hirata and his group there, in particular Dr. Yoshida, and others for their kind hospitality and help. The Physics Department of the University of Florida, Gainesville is acknowledged for hospitality and support during my visit there in summer 2009. The Joint Theory Institute of the University of Chicago is acknowledged for hospitality and support during my visits there in the summers of 2008 and 2010.

Finishing this long project would not have been possible without the constant support and help of my wife Soma and my son Rhivu. It gave me the strength to carry on doing this work in the midst of the many other responsibilities of daily life. Finally, the acknowledgment which precedes all others is that to Professor Gene Mazenko, who introduced me to the statistical physics of liquids. I have greatly benefited from my association with him, and his teaching is reflected in the pages of this book. I gratefully acknowledge him for his kindness and support over all these years.

Shankar Prasad Das, School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067.