

Mobile Cloud Computing and Probabilistic Cloud Performance Diagnosis and Prediction

Asst. Prof. Karan Mitra Luleå University of Technology Skellefteå, Sweden karan.mitra@ltu.se <u>https://karanmitra.me</u> 23rd December 2016

© http://tinyurl.com/nrqpww

Agenda

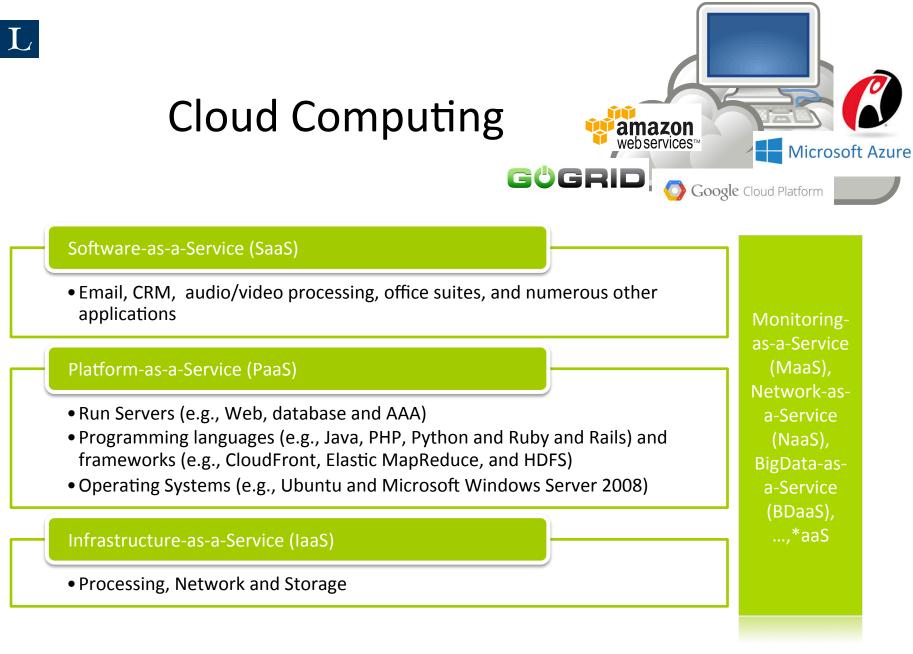
- Introduction
- M2C2: A Mobility Management System for Mobile Cloud Computing
- ALPINE: A Bayesian System for Cloud Performance Diagnosis and Prediction
- Summary

Introduction

Cloud Computing

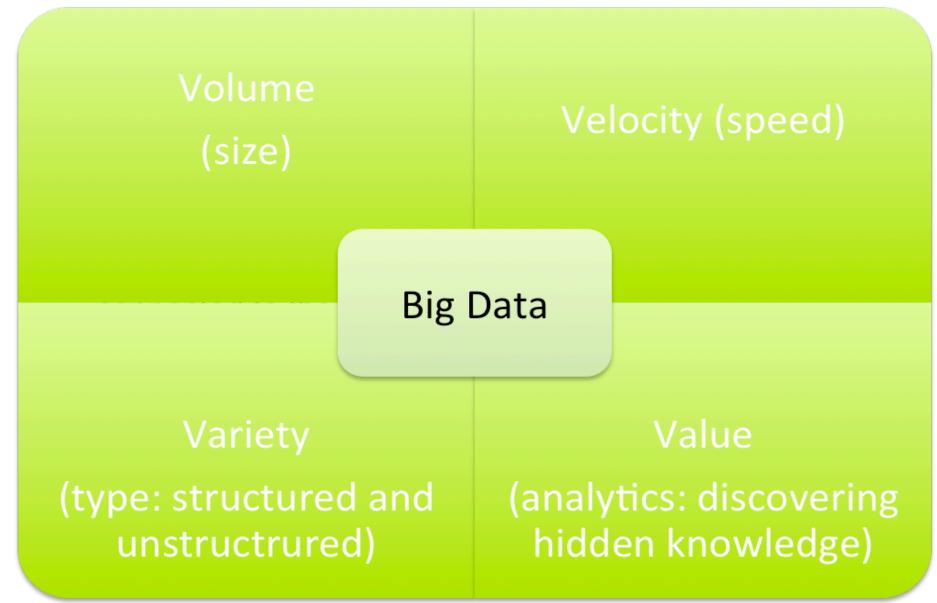
"Cloud computing is a model for enabling ubiquitous, convenient, ondemand **network access** to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction." [NIST,2011]

 Characteristics: On-demand access, broad network access, resource pooling (multi-tenant model), rapid elasticity, measured service (metering, and transparency)

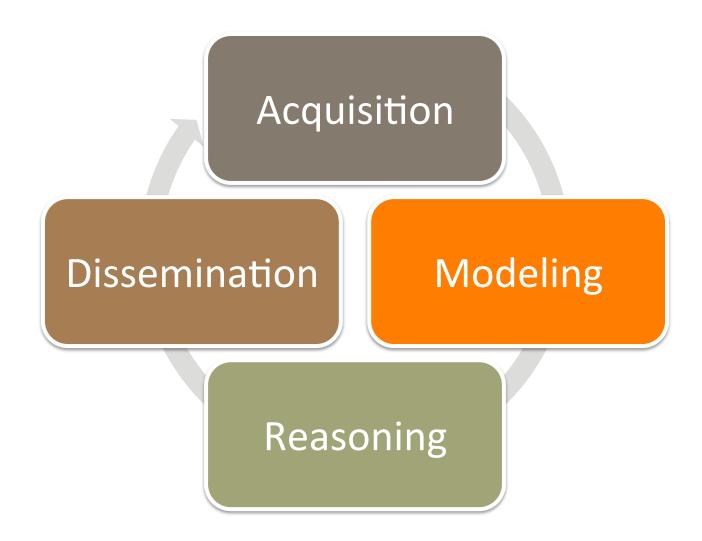

GÖGR

amazon webservices™

- Cloud-as-a-Utility
 - Like electricity and water
 - Illusion of infinite capacity
 - Massive economies of scale leading to low pay-as-you-go prices
 - No upfront commitment

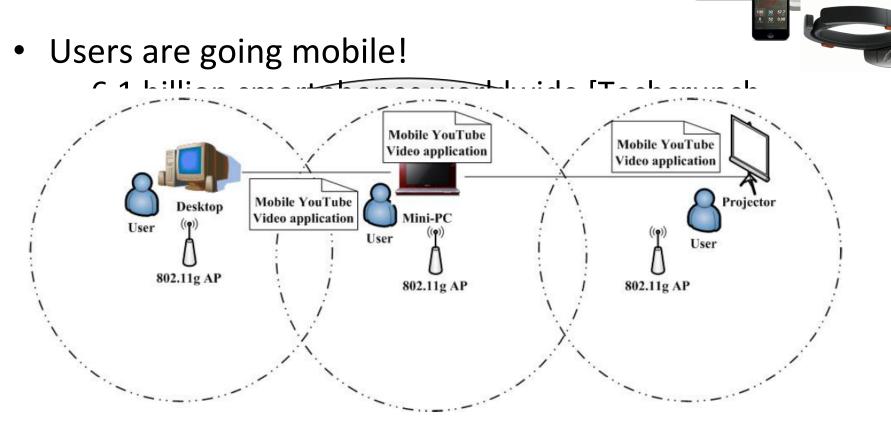

Microsoft Azure

Internet-of-Things and Big Data



IoT and Context-Aware Computing

- *"The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it."* [Weiser, 1991]
 - Computer vanishes into the background
- "Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and applications themselves" [Dey & Abowd, 1999]
- "A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task." [Dey & Abowd, 1999]
- Two decades of research led to numerous prototypes
 Limited number of sensors (physical or virtual)
- IoT, Clouds and Big Data leading to resurgence of the research in context-aware systems



Context-Aware Computing

Mobile Cloud Computing

- Minimize batterybioofsenhoption
- Mobility

Mobile Cloud Computing Challenges

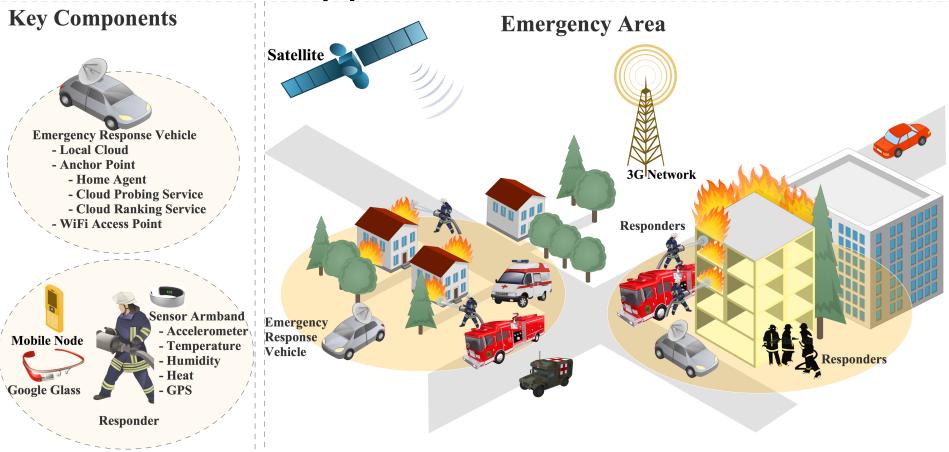
- End user mobile devices
 - Limited compute, storage and battery capacity
 - Network: intermittent connectivity, throughput, delay & jitter
 - Variability: both mobile networks and clouds
 - Mobility Management

Smart healthcare

Emergency management

Quality of Experience

- "Quality of experience (QoE) is a metric that depends on the underlying QoS along with a person's preferences towards a particular object or service where his/her preferences are defined by his/her personal attributes related to expectations, experiences, behaviour, cognitive abilities, object's a tributes and the environment surrounding that person". [Mitra, Zaslavsky, Åhlund, 2015]
 - QoE = f(QoS, Context)
- Humans recognize:
 - Faces in 370 ms (pest case) & 620 ms (worst case)!
 - Short speech chases: 300ms to 450 ms
 - Detect human voice : 4ms
- VR application's perceptual stability requires 16ms

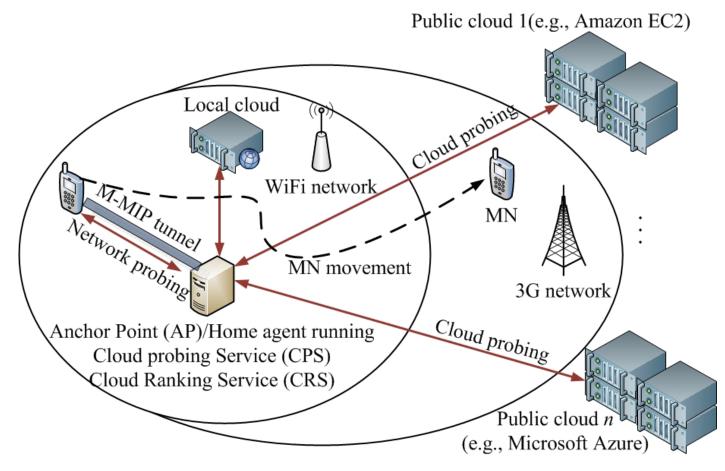

M2C2: A Mobility Management System for Mobile Cloud Computing

- Aim: To select the best cloud and the best network while users roam in heterogeneous access networks
- Proposed and developed M2C2
 - Multihoming: being able to connect to several access networks together (e.g., WiFi and LTE)
 - Cloud and network probing mechanisms
 - Cloud and network selection mechanisms

[•] Karan Mitra, Saguna Saguna, Christer Åhlund and Daniel Granlund, *"M2C2: A Mobility Management System for Mobile Cloud Computing"*, in Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (IEEE WCNC 2015), 2015.

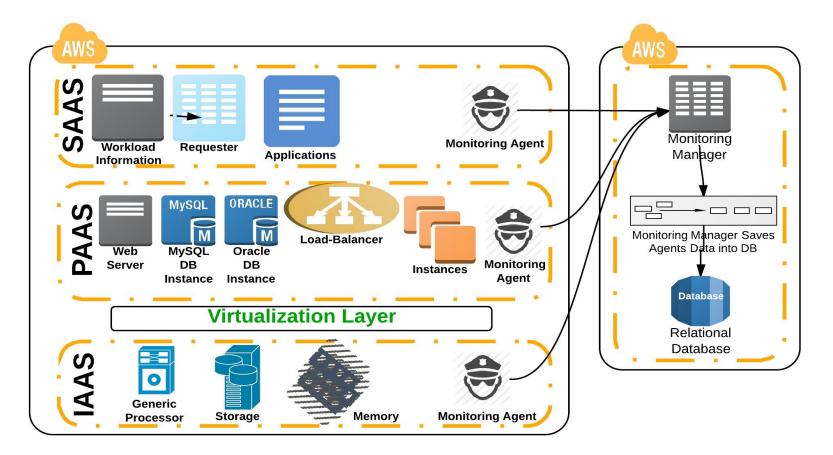
An Application Scenario

• Karan Mitra, Saguna Saguna and Christer Åhlund, *"A Mobile Cloud Computing System for Emergency Management,"* Cloud Computing, IEEE, vol. 1, no. 4, pp. 30–38, 2014.



M2C2: Mobility Management in Mobile Cloud Computing

- Comprise several components:
 - Anchor Point
 - Cloud and network awareness
 - Cloud Probing Service
 - Cloud Ranking Service
 - Cloud probing and ranking: RESTful Web services
 - Home Agent
 - Network path probing via M-MIP tunnel
 - Mobile Node
 - Network selection using Relative Network Load metric


M2C2: Mobility Management in Mobile Cloud Computing

M2C2: system architecture

Cloud Monitoring as-a-Service

- Khalid Alhamazani, Rajiv Ranjan, Karan Mitra, Prem Prakash Jayaraman, Huang Zhiqian, Lizhe Wang and Fethi Rabhi, "CLAMS: Cross-Layer Multi-Cloud Application Monitoring-as-a-Service Framework," in Proceedings of the 11th IEEE International Conference on Services Computing (IEEE SCC 2014). IEEE, 2014.
- Khalid Alhamazani, Rajiv Ranjan, Prem Jayaraman, Karan Mitra, Chang Liu, Fethi Rabhi, and Lizhe Wang, "Cross-Layer Multi-Cloud Real-Time Application QoS Monitoring and Benchmarking As-a-Service Framework", IEEE Transactions on Cloud Computing, 2015.

M2C2: Mobility Management in Mobile Cloud Computing

- Cloud Service Selection via Cloud Ranking Service
 - Simple Additive Weighting (SAW)

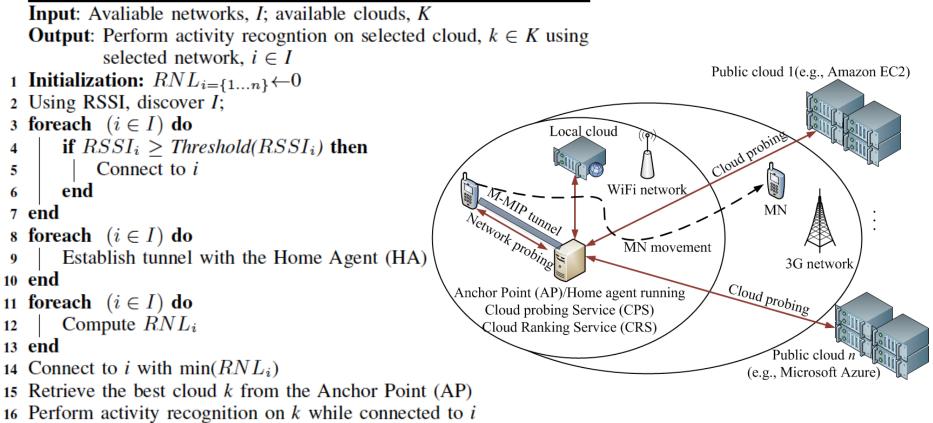
$$\Re_k = w_{ma}(QoS_{nk}) + (1 - w_{ma})(Cost_{nk}),$$

- Network Selection
 - Relative Network Load metric

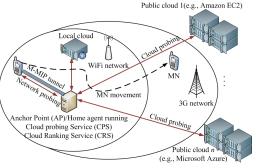
$$RNL = Z_n + cJ_n \tag{1}$$

$$Z_n = \frac{1}{h}RTT_n + \frac{h-1}{h}Z_{n-1} \tag{2}$$

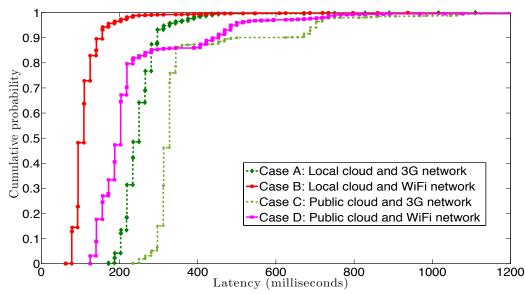
$$RTT_n = R_n - S_n \tag{3}$$


$$D_n = RTT_n - RTT_{n-1} \tag{4}$$

$$J_n = \frac{1}{h} |D_n| + \frac{h-1}{h} J_{n-1}$$
(5)


M2C2: Mobility Management in Mobile Cloud Computing

ALGORITHM 1: An algorithm for cloud and network selection for mobile cloud computing



Results Analysis

- Prototype implementation and experimentation
 - Activity recognition application
- Experiment 1: local clouds vs. public clouds
 - Computation should be offloaded to local clouds using WiFi

Results Analysis

• Experiment 2: Cloud and Network Selection

INFO: The total number of Clouds listed in our account are: 2 INFO: The start time is :Tue Sep 09 15:11:51 CEST 2014 INFO: The end time is :Tue Sep 09 15:16:51 CEST 2014 INFO: Cloud with IP: [54.77.183.180]CPU utilization statistics: 0.67% (avg), 1.69% (max), 0% (min) INFO: The start time is :Tue Sep 09 15:11:52 CEST 2014 INFO: The end time is :Tue Sep 09 15:16:52 CEST 2014 INFO: Cloud with IP: [54.77.218.113]CPU utilization statistics: 100% (avg), 100% (max), 0% (min) INFO: Retrieving the best URL... INFO: The Best cloud URL: [54.77.183.180] INFO: [54.77.183.180]

Mobile Cloud Application is running...

INFO: Getting sensor readings:

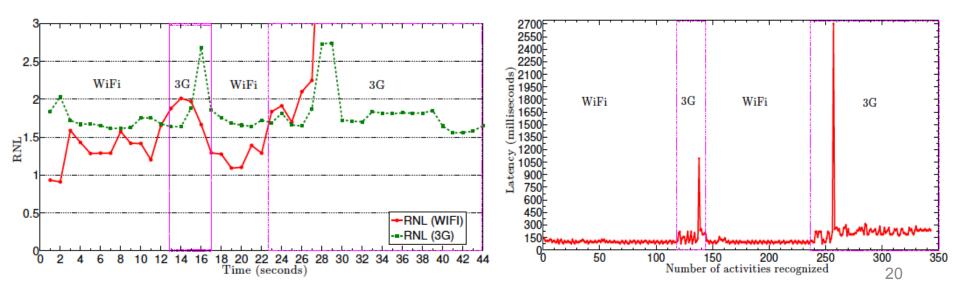
Sep 09, 2014 4:23:11 PM com.ltu.mobilecloud.mobilecloudapplications.MobileCloudApplications performActivityRecognition

INFO:

http://54.77.183.180:8080/ActivityRecogntionAppService/webresources/getactivity<u>?type</u>=xml&x=4 43&y=701&z=659

Sep 09, 2014 4:23:12 PM com.ltu.mobilecloud.mobilecloudapplications.MobileCloudApplications performActivityRecognition

INFO: The recognized activity is: <<u>InferredActivity</u>>sitting</<u>InferredActivity</u>>


Sep 09, 2014 4:23:12 PM com.ltu.mobilecloud.mobilecloudapplications.MobileCloudApplications performActivityRecognition

INFO: The end-to-end latency for performing AR on cloud: 54.77.183.180:8080 is: 176.0 milliseconds ¹⁹

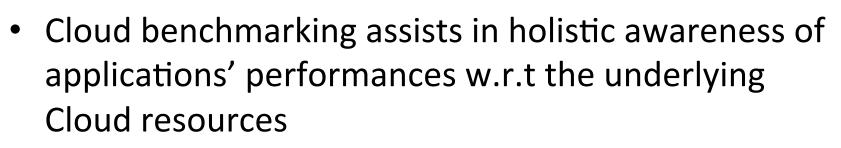
Results Analysis

- Experiment 3: Impact of mobility
 - Mobile node roaming in WiFi and 3G networks
 - Seamless handoffs with no packet loss
 - Activity recognition continued successfully
 - Variation in latency based on access network

Conclusion and Future Work

- Proposed, developed and validated M2C2
 - A novel system for mobility management in mobile cloud computing
 - Multihoming
 - Cloud and network probing
 - Cloud and network selection

Future Work:


- Power consumption on mobile devices
- Extend the metrics for power-aware computation and storage placement
- Real-world case studies for smart regions

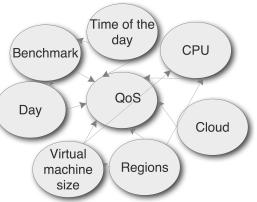
Cloud Performance Diagnosis and Prediction

- Cloud performance in terms of QoS is stochastic
- Affected by a large no. of parameters
 - Virtual machine types
 - Regions
 - Application workloads
 - Wide-area network delay
 - Throughput
 - Time-of-Day
 - Day-of-Week

Cloud Performance Diagnosis and Prediction

- Determining the baseline performance
 - Understanding application performance before its deployment
- Comparing continual comparison of applications QoS performance

Cloud Performance Diagnosis and Prediction

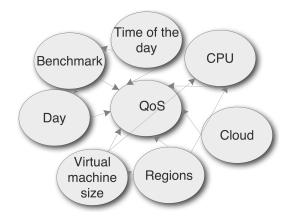

- Cloud performance benchmarking and diagnosis has attracted significant interest from industry and academia
- Still remains a highly challenging problem
 - N no. cloud providers x M no. of parameters
 - Each combination of parameters may lead to variation in performance
 - Lack of data sets
 - Limited experimental results under different use cases, constraints and experimental setups
 - Comparison with prior-work missing
- Hard to extract meaningful knowledge!
 - Root-cause diagnosis

ALPINE: A Bayesian System for Cloud Performance Diagnosis and Prediction

- We proposed and developed ALPINE for efficient cloud performance diagnosis and prediction
- Utilizes Bayesian Networks (BNs) to model uncertain and complex relationships between several factors
- Use the Expectation Maximization algorithm for learning BN model parameters
 - Handles missing information

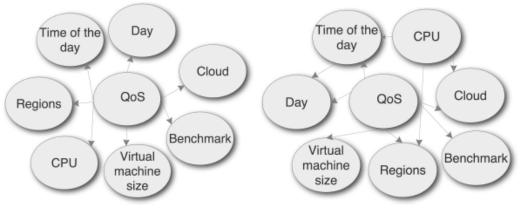
ALPINE: A Bayesian System for Cloud Performance Diagnosis and Prediction

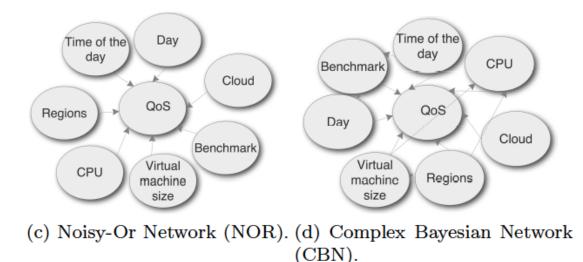
- Benchmark data is collected using tools such as CloudWorkBench, AWS CloudWatch and HTTPerf
- Data is pre-processed and stored in a database
- A BN is created by the expert or is learned using structural learning methods
- Modelled BN is used for Cloud performance diagnosis and prediction
- If BN(s) are deemed to be suitable, they are used by the stakeholders


ALPINE: A Bayesian System for Cloud Performance Diagnosis and Prediction

Definition 1. A Bayesian network (BN) is a directed acyclic graph (DAG) where, random variables form the nodes of a network. The directed links between nodes form the causal relationships. The direction of a link from X to Y means that X is the parent of Y. Any entry in the Bayesian network can be calculated using the joint probability distribution (JPD) denoted as:

$$P(x_1, ..., x_m) = \prod_{i=1}^m P(x_i | Parents(X_i)) \blacksquare$$
(1)


where, $parents(X_i)$, denotes the specific values of $Parents(X_i)$. Each entry in the joint distribution is represented by the product of the elements of the conditional probability tables (CPTs) in a BN


ALPINE: Multiple Types of Bayesian Networks

L

(a) Naive Bayes' Network(b) Tree-Augmented Naive (NBN). Bayes' Network (TAN).

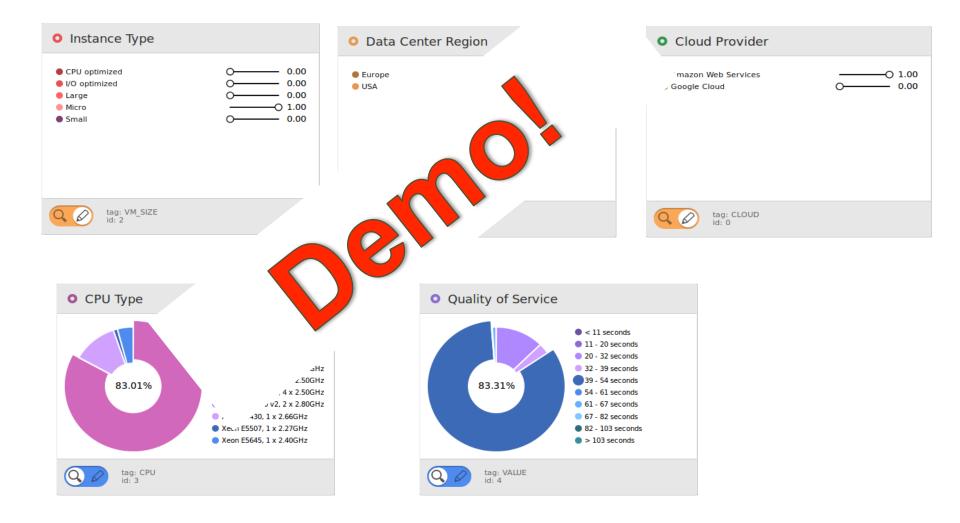
ALPINE: Results Validation

- Cloud benchmark dataset from (Leitner & Cito, 2014)
 - 30,140 unique records for Amazon EC2 and Google Compute Engine
 - Collected over one month
 - Five benchmarks
 - **CPU:** total time taken to check 20,000 natural numbers for primeness (in seconds, lower the better)
 - **MEM:** measure read/write memory speed in MB/s (higher the better)
 - **Compile:** total cloning and compilation time in seconds (lower the better)
 - I/O: measure the disk read/write speed for a 5GB file for 3 seconds (Mb/sec, higher the better)
 - **OLTP:** measure the average no. of MySQL queries/sec for 10,000 rows in 3 minutes (queries/sec, higher the better)

ALPINE: Results Validation

Table 1: Statistics related to all QoS values present in the dataset (Θ) .

QoS Para.	Min.	Max.	Mean	Std. Dev.	Count
CPU	8.41	132.08	46.89	38.90	6894
Compile	0	2654.5	230.07	171.50	7319
Memory	611.65	6316.1	4114.5	1692.7	4581
I/O	1	1009.6	17.96	51.11	7377
OLTP	15.38	1130.25	310.05	281.74	3969
Combined	0	6316.1	737.19	1584.2	30140



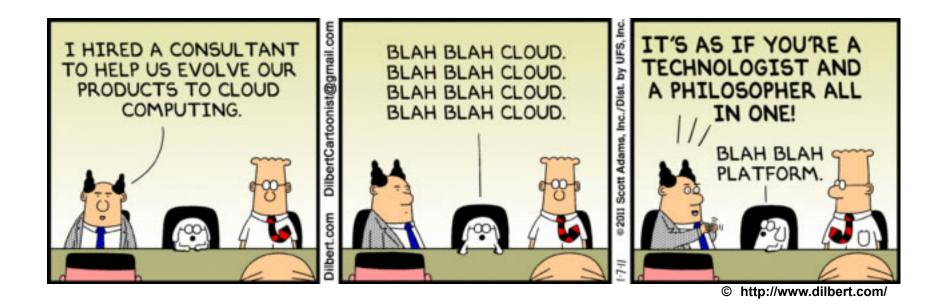
ALPINE Results Validation: Diagnosis

- CPU performance diagnosis
 - "For a certain QoS value, what is the most likely instance type, CPU type, and the region"
 - Using a single query we are trying to infer three factors:
 - Instance type
 - CPU type
 - Region
- What is the impact of time-of-the-day, and day-ofthe-week

ALPINE Results Validation: Diagnosis

- BN can be modelled in several ways
 - We tested 4 different types of BNs as mentioned previously
 - 10-fold cross validation
 - 91.93% accuracy

BN Type	CPU	Compile	Memory	OLTP	I/O
NBN	97.12	95.93	89.54	97.40	76.21
TAN	99.24	96.08	92.20	97.40	76.17
NOR	99.24	95.65	91.42	97.40	76.08
CBN	99.24	96.09	92.70	97.40	76.04



Conclusions and Future Work

- Proposed, developed and validated ALPINE
 Cloud diagnosis and prediction
- Data collection for multiple Cloud providers
- Finalize the prototype
- Extend our work on cloud orchestration to dynamically provision Cloud resources

Thank you for your attention!

Questions?