Energy Aware Scheduling in Cloud Datacenter

Jemal H. Abawajy, PhD, DSc., SMIEEE Director, Distributed Computing and Security Research Deakin University, Australia

Introduction

- *Cloud computing* is the delivery of *computing* as a service rather than a product
 - You pay only for what you used
 - Hosted in very large data centres
- Data centres consume high <u>energy costs</u> and <u>huge</u> <u>carbon footprints</u>.
 - Financial Issues: In excess of \$11 billion in 2010 and cost doubles every five years.
 - Reliability issues: For every 10° increase in temperature, the failure rate of a system doubles.
 - Environmental issues: Closer to 2% when data center systems are factored into the equation.

How to make cloud computing energy efficiency?

- Cloud hosts a variety of applications
 - Some run for a few seconds (e.g. serving requests of web applications such as e-commerce and social networks portals)
 - Others run for longer periods of time (e.g. simulations or large dataset processing).
- Consider <u>energy</u> as a resource
- Recent devices (CPU, disk, communication links, etc.) support multiple power modes.

Energy Consumption Management

• High performance is needed only for a small fraction of time, while for the rest of time, a low-performance, a low-power processor would suffice.

Resource Management for Cloud Computing

- Advanced scheduling to reduce energy consumption
 - Consider energy as a resource when provisioning computing resources to the applications
 - Exploit system level power management to reduce the power consumption.
 - Modern processors operate at multiple frequency levels.
 - The higher the frequency level the higher the energy consumption

Energy Aware Scheduling in Cloud Datacenter

- Two conflicting objectives of the scheduler:
 - Minimizing energy consumption of the data center
 - Meet the quality of servers (e.g., deadlines)
- Why they are conflicting objectives?
 - Energy reduction is system centric
 - QoS is user centric

Taxonomy of Power Management Techniques

Source: Raj

Source: Raj

Dynamic Voltage Scaling (DVS)

- The idea is to adjust the supply voltage dynamically
 - DVS scales the operating voltage of the processor along with the frequency (f).
 - Since energy is proportional to f², DVS can potentially provide significant energy savings through frequency and voltage scaling.
- Note: if we reduce the frequency we save energy but, we spend more time in performing the same computation

Simple DVS-Scheme

Application Scheduling

- One effective method: Application Scheduling
 - Consolidate running applications to a small number of servers
 - Make idle servers sleep or power-off
- Migration cost-aware scheduling
 - Task scheduling usually involves energy-cost of virtual machine migration
 - Consider the task migration-cost between servers

Adaptive Energy-aware Scheduling Algorithm on Virtualized Network Datacenters

- Goal: Design scheduling algorithm with aim of further reduce total energy consumption
 - Considering Computing-plus-communication energy consumption and the VMs reconfiguration and disk energy consumption.
 - Converting non-convexity form of communication energy consumption into convex form,
 - Theoretically supported: Introducing the stochastic service system theory.
 - Experimental evaluating and verifying the effectiveness of the proposed algorithm.

Optimization problem

• The energy optimization problem can be formulated as follows:

- minimize (E_{total})

• where (E_{total}) is defined as follows:

$$-E_{total} = \sum_{i=1}^{m} \left(E_{cpu}(i) + E_{com}(i) + E_{disk}(i) + E_$$

System Model

Computational Energy Consumption

 Dynamic power consumption of a CPU is related to processing frequency and supply voltage as follows

$$P = A \cdot C_{eff} \cdot f \cdot V^2$$

- active percentage of gates,
- effective capacitance load,
- processing frequency and
- the supply voltage of the CPU.

Computational Energy Consumption

Therefore, the computational energy consumption of a VM *i* (*E_{cpu}(i*)) can be defined as follows:

$$-E_{cpu}(i) = \sum_{k=0}^{Q} AC_{eff}(f_k(i))^3 t_k(i) \quad \forall i = \{1, 2, ..., M\}$$

- $f_k(i)$ is the *k*-th discrete frequency of the VM *i*,
- $t_k(i)$ represents the time that the VM *i* operates at frequency $f_k(i)$
- *k*=0 means the idle state of VM *i*,
- Q represents the number of CPU frequencies permitted for each VM

VMs reconfiguration energy consumption

• The VMs reconfiguration energy consumption for VM *i* includes two parts:

 $-E_{reconf}(i) = E_{reconf}(Ext)(i) + E_{reconf}(Int)(i)$

- $E_{reconf}(Ext)(i)$ external cost for VMs reconfiguration
 - transition from final active discrete frequency of VM *i* for processing the last job to the first active discrete frequency which processes the next incoming job

-
$$E_{reconf}(\text{Ext})(i) = k_c \times E_{exter}$$

- $E_{reconf}(Int)(i)$ cost of the VMs reconfiguration internal energy consumption
 - when VM *i* from the current active discrete frequency $(f_k(i))$ to another frequency $(f_{k+1}(i))$ transits
 - $E_{reconf}(Int)(i) = k_c \times \sum_{k=0}^{Q} (f_{k+1}(i) f_k(i))^2$
- k_c is the coefficient of reconfiguration energy consumption.

Communication Energy Consumption

- Each VM needs to communicate with VMM with a dedicated virtual link,
- As for one-way transmission plus switching operation, the power consumption (*p_{net}(i*)) can be described as follows:

•
$$p_{net}(i) = p_{net}^T(i) + p_{net}^R(i)$$

- $-p_{net}^{T}(i)$ is the power consumption of transmitting and switching,
- $-p_{net}^{R}(i)$ refers to the energy consumption of receiving operation.

Disk Energy Consumption

• The power consumption of storage service $(E_{disk}(i))$ can be calculated as follows:

$$- E_{disk}(i) = \frac{W}{3600} \left(E_T + 1.5 \frac{P_{cs}}{C_{cs}} \right) + \frac{2S}{D} \times \frac{P_{hd}}{C_{hd}}$$

- S: is the size of a task,
- E_T represents the per-bit energy consumption of transmission and switching,
- P_{cs} refers to the energy consumption of the considered server,
- C_{cs} is the capacity of the considered server,
- *D* represents the number of downloads per hour and this value can be obtained by empiric value,
- P_{hd} is the energy consumption of hard disk arrays (cloud storage),
- C_{hd} represents the capacity of the hard disk arrays.

Performance Analysis

Parameter	Value	Parameter	Value
λ	4	Q	5
μ	5	R _{total}	100 (Gbit/s)
m	10	C _{cs}	604.8 (Tb)
η	0.5 (mW)	P _{cs}	4.9 (kW)
k _c	0.05 Joule/(GHz)²	E _T	1.42×10 ⁻⁹ (W/per-bit)
T _{total}	7 (s)	D	20
т	5 (s)	P _{hd}	225 (W)
P _{idle}	0.5 (W)	C _{hd}	800 (Mb/s)

Comparison Algorithms

- Modified the following as they concentrate on computational energy consumption
 - Lyapunov utilizes the queuing information to maximize the throughput and minimize the energy consumption
 - Standard uses the DVFS policy to save energy consumption
- The following are just for comparison
 - NetDC works depended on the calculated proportional of real frequency, which could not be used in real scenarios
 - IDEAL needs to work on continue ranges of frequencies, which is unfeasible and unrealistic in real environments

Computational energy consumption

Computational + Communication energy consumption

CPU+Comm+Rec

CPU+Comm+Recnfig+Disk Energy Cost

Summary

- Developed an adaptive energy-aware algorithm that considers four systems components
- The experimental results prove that
 - optimizing total energy consuming resource is more efficient than optimizing only one or two energy consumption;
 - We found that computation energy-consumption (E_{cpu}) and communication energy-consumption (E_{com}) account for the majority,
 - VMs configuration energy consumption (E_{reconf}) and disk energy consumption (E_{disk}) account for only small part.

Future Work

- Combine concepts of both Power-aware and Thermalaware scheduling to minimize both energy and temperature.
- Integrated server, rack, and cooling strategies.
- Further improve VM Image minimization.
- Designing the next generation of Cloud computing systems to be more efficient.

Thank You