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In the modern world, auctions are used to
conduct a huge volume of economic
transactions.

Government contracts are typically awarded
by procurement auctions, which are also
often used by firms subcontracting work or
buying services and raw materials.

In OECD (2013) it is reported that the
procurement of public services accounts for
approximately 17% of GDP of EU countries.

The theory of auctions provides the
necessary analytical framework to study such
procurements.



Benchmark model: there is one indivisible
object up for sale and there are some
potential bidders.

Standard auction: the object is sold to the
highest bidder.

Procurement auction: the auctioneer is the
buyer and the object is sold to the lowest
bidder.

The payment by each bidder depends on the
type of auction used by the seller.

Huge literature around this model (see
Krishna, 2010).



It may be noted that the benchmark model is
really a price-only auction.

For example, in the traditional theory of
standard procurement auctions, the
auctioneer cares only about the price of the
object, but not the other attributes.

However, in many procurement situations, the
buyer cares about attributes other than price
when evaluating the offers submitted by
suppliers.

Non-monetary attributes that buyers care
about include quality, time to completion etc.



Example- in the contract for the construction
of a new aircraft, the specification of its
characteristics is probably as important as its
price.

Under these circumstances, procurement
auctions are usually multidimensional:
bidders submit bids with the relevant
characteristics of the project (among which is
price).

The procurement agency gives a score to
each bid and makes its decisions based on
these scores (scoring auction).



Examples of scoring auctions

The Department of Defence in USA often
relies on competitive source selection to
procure weapon systems.

Each individual component of a bid of the
weapon system is evaluated and assigned a
score, these scores are summed to yield a
total score, and the firm achieving the highest
score wins the contract.



Bidding for highway construction work in the
United States: procurement authorities
evaluate offers on the basis of price and
non-price attributes.

The rule of “weighted criteria” (used in states
like Delaware, ldaho, Massachusetts,
Oregon, Utah, Virginia, etc.) puts a weight on
each of price and quality attributes (e.g.
delivery date, safety level) and evaluates
each attribute individually, so that a total
score of each offer is a weighted sum of
sub-scores and a supplier with the highest
total score wins a contract.



In a country like India where fuel costs are
very high, airlines greatly value the fuel cost
savings.

Airline companies in India typically purchase
new aircraft after evaluating competing offers
(that include price as well as various quality
parameters) from big aircraft suppliers like
Boeing and Airbus.

For example in 2011, after evaluating
competing offers, IndiGo (a low-cost Indian
airline) ordered 180 Airbus A320s from Airbus
for a valuation of $15.6 billion.



The Baseline Model (Che, RAND,
1993)

A buyer solicits bids from » firms.

Each bid specifies an offer of promised
quality, g and price, p, at which a fixed
quantity of products with the offered level of
quality g is delivered. The quantity is
normalised to one.

For simplicity quality is modelled as a
one-dimensional attribute.



The buyer derives utility from the contract
.q) € R%

Up.,p) = V(g)—p
where V' >and V"' < 0.

A firm i upon winning, earns from a contract
(g,p) profits:

wi(p,q) = p—c(q.9:)
where firm i’s cost ¢(q,0;) is increasing in
both quality ¢ and cost parameter 6,.
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We assume ¢,y > 0, cp9p > 0 and ¢y > 0.

These assumptions are satisfied by
c(q,0) = q0.

Losing firms earn zero.
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Prior to bidding each firm i learns its cost
parameter 0; as private information. The
buyer and other firms (i.e. other than firm i)
do not observe 6; but only knows the
distribution function of the cost parameter.

It is assumed that 6; is identically and
Independently distributed over [0, 0] where

0<6<ao.
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Let S(p,q) denote a scoring rule for an offer
(p,q). The rule is assumed to be publicly
known to the firms at the start of bidding.

We restrict attention to quasi-linear scoring
rules with the following properties:

S(p,q) = s(q) — p where s(q) — c(gq,0) has a
unique maximum in g for all 6 € [8,0] and s(.)

IS Increasing in q.
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The buyer awards the contract to a firm
whose offer achieves the highest score. This
Is similar to a standard auction.

First-score auction: The winning firm’s offer
is finalised as the contract. This auction rule
is a two-dimensional analogue of the first
price auction.

In a second-score auction, the winning firm
is required to (in the contract) to match the
highest rejected score. In meeting this score,
the firm is free to choose any quality-price
combination. This auction rule is a
two-dimensional analogue of the
second-price auction.
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An example: Let the scoring rule be

S(pDQ) — IOﬁ —P-

Suppose two firms A and B offer (5,16) and
(3,9).

Note §(5,16) = 35 and S(3,9) = 27.

Under both auction rules firm A is declared
the winner. However, the final contract
awarded to firm A is the following:

1. (5,16) under the first-score auction.

2. Any (p,q) satisfying S(p,q) = 27 under the
second-score auction.
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Equilibria under various auction
rules

Each auction rule can be viewed as a
Bayesian game where each firm picks a
quality-price combination (p,q) as a function
of its cost parameter.

Without any loss of generality, the strategy of
each firm can be equivalently described as
picking a score and quality (S, q).

We now provide our first main result.
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Lemma:

With first-score and second-score auct_ions,
quality is chosen at ¢,(0) for all 0 € [6,0]
where

qs(0) = arg maxs(q) — c(q,0).

A simple intuition behind the result is that in
equilibrium the firm tries to maximise
p —c(q,0) given a score level s.
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Essentially, the previous lemma reduces the
two dimensional auction to a single
dimensional problem.

Let in equilibrium each firm choose (p,¢) as a
function of its type 6. That is a firm chooses

(p(0),q(0)). In equilibrium ¢g(0) = ¢s(0).

It can be shown that there is a
Bayesian-Nash equilibrium where the score
S(p(0),q:(0)) chosen is strictly decreasing in
0.
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et
So(0) = max(s(q) — c(q,0))
= 5(qs(0)) — c(gs(0),0).

From the envelope theorem Sy(.) is strictly
decreasing.

Consider the following change of variables:

v = S0(0) = s(q5(0)) — c(g5(6),0)
H(v) =1-F(S;'(v))

b(0) = 5(q:(09),p(0)) = s(¢s(0)) — p(0)
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Note that the objective function facing each
firm in the first-score auction is the following:

7(¢:0).p | 0) = [p — c(q:(6),6)] (probability win)

Firm 1 (say) will win the contract iff it has the
highest score. That is, if

b(01) > max{b(0;);
= 0 < r}liln{Hj}
(since b(.) is strictly decreasing)
orobability win = probability (91 < %iln{ej})
= (1-F(61)""

Note p — c(qs(0),0) = v—b(0)
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Using standard auction-theoretic techniques
we can show the following:

Symmetric equilibrium of a first-score
auction:

q'(0) = q(0) = arg maxs(q) - c(¢,0)

- n-l
p'(0) = c(gs(0),0) +J.Z C(’(W)’t)[ 11:15((2)) }

The second-score auction has a dominant
strategy equilibrium:

" (0) = ¢:(0) = arg maxs(q) — c(g,0)
p"(8) = c(gs(6).0).
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Expected Scores: Notations and
preliminaries

Let F1(.) and f1(. ) be the distribution and
density function of the lowest order statistic.

Let F>(.) and f2(. ) be the distribution and
density function of the second lowest order
statistic.

Fi(x) = 1-(1-F(x))"

Fo(x) = 1= (1= F(x))" = nFx)(1 - F(x))""
fi(x) = n(1 = F(x))""f(x)

S2(x) = n(n - DF@)(1 - F(x))" fx)
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Expected scores with quasi-liner scoring
rule: S(p,q) = s(g) —p

In a first-score auction the expected score is
as follows:

2 = [ [s(4'0)) - P'(0) 11 (0)db

0
0

In a second-score auction the expected score
is as follows:

2 = [ [5(4"(©)) - p"(O)1/>(0)d0
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Score equivalence

An important result is the
zl — ZH.

@® This is the two-dimensional analogue of the
Revenue Equivalence Theorem in the
benchmark model.
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What happens when quality and types are
multidimensional?

Can we reduce the strategic environment to
one dimensional private information?

If so, under what conditions can this be
achieved?

To answer the above questions, we need a
slightly modified model (following Asker and
Cantillon, RAND, 2008).
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Consider a buyer seeking to procure an
indivisible good for which there are n potential
suppliers. The good is characterized by its
price, p, and m > 1 non-monetary attributes,

Q  R7.

The buyer values the good (p, Q) at v(Q) — p.

Supplier i's profit from selling good (p,Q) is
given by p — ¢(Q,0;), where 0, € R¥ k> 1, is
supplier i’s type. We allow suppliers to be
flexible with respect to the level of
non-monetary attributes they can supply.
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Preferences are common knowledge among
suppliers and the buyer, with the exception of
suppliers’ types, 0;, i = 1,...n, which are
privately observed.

Types are independently distributed
according to the continuous joint density
function f; with support on a bounded and
convex subset of R* with a non-empty interior
;.

A scoring rule is a function S : R — R

: (p, Q) — S(p,Q) that associates a score to
any potential contract and represents a
continuous preference relation over contract
characteristics (p, Q).
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The outcome of the scoring auction is a
probability of winning the contract, x;, a score
to fulfill when the supplier wins the contract,
', and a payment to the buyer in case he
does not, ¢.

In a first-score auction, the winner must
deliver a contract that generates the value of
his winning score, that is, 7" = S(p,Q;) and

th = 0.

In a second-score auction, the winner must
deliver a contract that generates a score
equal to the score of the second-best offer
received and ¢: = 0.
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Consider supplier i with type 6;, who has won
the contract with a score to fulfill 7.

Supplier i will choose characteristics (p, Q)
that maximize his profit, that is,

I(I’i%>§{p —c(Q,0:)} st.s(Q)—p =1¢

Substituting for p into the objective function
yields

mgX{S(Q) -c(Q,0;) -t}
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An important feature of the above is that the
optimal Q is independent of 7.

Now define

k(0:) = max{s(Q) - c(Q.0:);

We shall call £(6;) supplier i's pseudotype.
Bidders’ pseudotypes are well defined as
soon as the scoring rule is given.

The set of supplier i’'s possible pseudotypes
is an interval in R. The density of
pseudotypes inherits the smooth properties of

fi.

30



With this definition, supplier i’s expected profit
IS given by

xi(k(0:) — 1) — (1 —x)t;

In the above supplier i's preference over
contracts of the type (x;,z7,t!) is entirely
captured by his pseudotype.

Note: Only quasi-linear scoring rules have the
above property when private information is
multidimensional.
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Let
Si = xit} + (1 —Xi)tg.

Given suppliers’ risk neutrality and the
linearity of the scoring rule, there is no loss in
defining the outcome of a scoring auction as
the pair (x;,s;), rather than (x;, ¥, ).

Suppliers’ expected payoff is thus given by
)C,‘k(@,‘) —S;.
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The outcome function of a scoring auction is
a vector of probabilities of winning
(x1,x2...,x,) and scores to fulfill by each
supplier, (s1,52...,5,).

The arguments in these functions are the bids
submitted by all suppliers, {(p:,Q,)}~;.

Define two equilibria as typewise outcome
equivalent if they generate the same
distribution of outcomes (x,x>...,x,) and
(s1,82...,5,), conditional on types In

@1 X @2. .. ®n
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Proposition:

Every equilibrium in the scoring auction is
typewise outcome equivalent to an
equilibrium in the scoring auction where
suppliers are constrained to bid only on the
basis of their pseudotypes, and vice versa.

@® The above Proposition ensures that there is
no loss of generality in concentrating on
pseudotypes when deriving the equilibrium in
the scoring auction, even if the scoring rule
does not correspond to the buyer’s true
preference.
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@® Note that the above Proposition does not rule
out equilibria where different types submit
different (p, Q) bids- but given that they yield
the same score and the same probability of
winning at equilibrium, they are payoff
irrelevant.

While the above comments might not be
totally surprising when types are
one-dimensional, this result is not trivial for
environments where types are
multidimensional.
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The equilibrium in quasi-linear scoring
auctions with independent types inherits the
properties of the equilibrium in the related
single-object auction where

1. bidders are risk neutral

2. their (private) valuations for the object
correspond to the pseudotype % in the
original scoring auction and are
distributed accordingly

3. the highest bidder wins

4. the payment rule is determined as in the
scoring auction, with bidders’ scores
being replaced by bidders’ bids.
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The above suggests the following simple
algorithm for deriving equilibria in scoring
auctions:

1. Given the scoring rule, derive the
distribution of pseudotypes, G;(k).

2. Solve for the equilibrium in the related
SIPV (benchmark) auction where
valuations are distributed according to
Gi(k).

3. The equilibrium bid in the scoring auction
IS any (p,Q) such that S(p,Q) = b;(k).

4. The actual (p, Q) delivered are easy to
derive given b;(k) and the solution to

max{s(Q) - c(Q.0:) — 1"}
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Non-quasilinear scoring rules

Most papers on scoring auctions, except a
very few recent ones, have used quasilinear
scoring rules. That is, S(p,q) = ¢(q) — p.

What about the case where the scoring rules
are non-quasilinear? Why should we care
for such scoring rules?

1. Equilibrium properties of scoring auctions
with general non-quasilinear scoring rules
have not been fully worked out.

2. Non-quasilinear scoring rules are often
used in real life.
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Examples

For highway construction projects, states like
Alaska, Colorado, Florida, Michigan, North
Carolina, and South Dakota use
quality-over-price ratio rules, in which the
score is computed based on the quality
divided by price (i.e. S(p,q) = ).

The above scoring rule is extensively used in
Japan and also in Australia.

Ministry of Land, Infrastructure and
Transportation in Japan allocates most of the
public construction project contracts through
scoring auctions based on quality-over-price
ratio rules
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In its Guide to Greener Purchasing, the
OECD (2000, p.12) writes that the objective
of procurement rules in member countries is
“to achieve a transparent and verifiable best
price/quality ratio for any given product or
service.” Quality-price ratios are thus used
explicitly for assessing bids for procurement
purposes by many governments.

Some governments in EU countries use the
scoring auction in which the score is the sum
of the price and quality measurements but the
score is nonlinear in the price bid (see
Nakabayashi et al, 2014).

However, very few papers in the literature
have dealt with general non-quasilinear
scoring rules.
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1. Hanazono, Nakabayashi and Tsuruoka
(2015) is the only paper till date that
deals with general non-quasilinear
scoring rules.

2. Hanazono (2010, Economic Science, in
Japanese) provides an example with a
specific non-quasilinear scoring rule and
a specific cost function.

3. Wang and Liu (2014, Economics Letters)
analyses equilibrium properties of
first-score auctions with another specific
non-quasilinear scoring rule.
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Note the following for all the above papers.

1. The explicit solutions for the
equilibrium strategies are not generally
obtained.

2. The choice of ‘quality’ is endogenous in
the ‘score’ under the general scoring
function.

3. Moreover, the comparison of expected
scores (in Hanazono el at, 2015) is based
on properties of induced utility whose
arguments are implicitly defined.
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Questions (Dastidar, 2015)

1. Can we get explicit solutions for
equilibrium strategies with general
non-quasilinear scoring rules?

2. Can we provide a complete
characterisation (price, quality, score)
of such equilibria?

3. Also, can we get ranking of the two
auction formats (first-score and
second-score) in terms of expected
scores by directly using curvature
properties of the scoring rule and the
distribution function of types?

4. If so, under what conditions can the
above be achieved?
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Answer:

We show that all the above can be done if the
cost function is additively separable in
quality and type.

1. Our computations provide a much
simpler way to derive equilibria in scoring
auctions without any endogeneity
problems. We get explicit solutions.

2. We provide a complete
characterisation of such equilibria and
ranking of quality, price and the
expected scores.

3. This stands in contrast to the results
derived in Hanazono et al (2015) and
Wang and Liu (Economics Letters, 2014).

44



The Model

A buyer solicits bids from » firms.

Each bid, (p,q) € R2,, specifies an offer of
promised quality, g and price, p, at which a
fixed quantity of products with the offered
level of quality ¢ is delivered.

The quantity is normalized to one. For
simplicity quality is modelled as a
one-dimensional attribute.

The buyer awards the contract to a firm
whose offer achieves the highest score.
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Scoring rule : S(p,q) : R2, - R

Assumption 1

S(.) is strictly decreasing in p and strictly
Increasing in ¢. Thatis, S, < 0and §, > 0. We
assume that the partial derivatives S,, S,

Sops SpgsSqq €XiSt and they are continuous in

all (p,q) € Rz,

A scoring rule is quasilinear if it can be
expressed as ¢(q) —p. For quasilinear rules
we have §,, = 0 and S,, = 0.

For non-quasi-linear rules we must have at
least one of the following: S,, + 0 or S,, = 0.
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The cost to the supplier is C(g,x) where x is
the type.

Assumption 2
We assume C, > 0, Cy, > 0 and C, > 0.

Prior to bidding each firm i learns its cost
parameter x; as private information.
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The buyer and other firms (i.e. other than firm
i) do not observe x; but only knows the
distribution function of the cost parameter.

It is assumed that x;s are identically and
independently distributed over [x,x] where
0<x<x.

If supplier i wins the contract, its payoff is
P~ C(Q9xi)'

48



Assumption 3

Cost is additively separable in quality and
type.

That is, C(g,x) = c¢(q) + a(x) where ¢'(.) > 0,
¢"()>0, ax)>0and a'(.) > 0.

Define 0; = a(x;).

Let O = a(x) and let 8 = a(x). Clearly, 0 <0 <
0.

Since x;s are identically and independently
distributed over [x,x], so are the 6;s over
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Let the distribution function of 9; be F(.) and
the density function be f{.).

Note that /{0) > 0 VO < [0,0].

We can now write the cost for supplier as
C(q,0;) = c(q) + 0;, where 0, is the type of
supplier i.
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Assumption 4
For all (p,q) € R2,

2
= %Spp +28,8,5 —SpSqss — (S,)*c"(.) < 0

@ It may also be noted that when ¢"(g) > 0
then both for the quasilinear rule

S(p,q) =q-p
and for the non-quasilinear rule

Sp.q) = %

the above assumption 1s always satisfied.
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The following may be noted:

1. Our cost, C(q,0;) = c(q) +0;, can be
interpreted in the following way. c(q) is
the variable cost and 0; is the fixed cost
of firm i. This means, the variable costs
are same across firms but the fixed costs
are private information.

2. 0; can be interpreted to be the inverse of
managerial/engineering efficiency which
is private information to the firm.

3. Higheris 0;, lower is the
managerial/engineering efficiency, and
consequently, higher will be the cost.
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4. The assumption (cost is additively
separable in quality and type) is
consistent with the set of assumptions in
Hanazono et al (2015) and Asker and
Cantillon (Rand, 2008).

5. Additive separability implies Cp(.) = 0.
This is different from Che (Rand, 1993),
Branco (Rand, 1997) and Nishimura
(2015).
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Proposition 1

In a first-score auction there is a symmetric
equilibrium where a supplier with type 6
chooses (p(0),4'(0)). Such p!(.) and ¢!(.)
are obtained by solving the following
equations:

Sq()
S()—C()

—c(q) =0+7(0)

_ j (1 - F(0))""dt

S —F(9))

54



Proposition 2

In a second-score auction there is a weakly
dominant strategy equilibrium where a
supplier with type 0 chooses (p(0),4"(0)).
Such p’(.) and ¢“(.) are obtained by solving
the following equations:

5,0
TS0 W

p—clg) =10
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Our equilibrium is similar to Che (Rand,
1993).

In Hanazono et al (2015) the scoring rule 1s
non-quasilinear but the equilibrium strategies
are only derived implicitly. Same 1s true for
Wang and Liu (Eco. Let., 2014), where a

specific scoring rule 1s considered.

In our case, the cost function is additively
separable 1n quality and type and we get
explicit solutions for equilibrium strategies
for both kinds of scoring rules: quasilinear
and non-quasilinear.

Additive separability of the cost function
makes equilibrium computations very simple.
This stands 1n contrast to Hanazono et al
(2015) and Wang and Liu (Eco. Let., 2014).
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@® Moreover, our assumptions are also milder
and are satisfied a by a large class of scoring
rules.

® When the scoring rule is quasilinear S,(. ) is
a constant and S, 1s independent of p (since
Syp = Sgp = 0). Note that in any auction the

equation ——£ — ¢/(.) is satisfied. This
1 S5 ()

means the quality, g, 1s constant and same for
the two auctions.

We illustrate the above two propositions in
two examples given below.
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Example 1 (non-quasilinear scoring rule)

Let S(p,q) = + and C(q,0) = S-q> +6. Let o
be uniformly distributed over [1,2]. Let n = 2.

Equilibrium

First-score auction:
pl(0) =2+0, ¢'(0) = J2+0 VO € [1,2].

Second-score auction:
p(0) =20, ¢(0) = J20 VO < [1,2].
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Example 2 (quasilinear scoring rule)

Let S(p,q) = g —p and C(q,0) = %qz +0.Leto
be uniformly distributed over [1,2] and n = 2.

Equilibrium

First-score auction

pl0) = 3+ 216, ¢'(6) = 1V6  [1,2]

Second-score auction
pO) = % +0, "(0) = 1v0 < [1,2].
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We define the following:

Ap,q) = - gz((?g% Sep(D>q) + Sep(P,q)
Bp.0) = 25, 0.0) + $,0.0)¢" (@)

"‘Sqq(paQ)
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Equilibrium Characterisation

Lemma 1
p'(0) = p™(0) and ¢’(0) = ¢"(0).

@ A firm with the highest type (0) quotes the
same price and quality across first-score and
second-score auctions (lemma 1).

@ Consequently, a firm with type 0 also quotes
the same score in both auctions. This is true
regardless of the fact whether the scoring rule
1s quasilinear or not.
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The following lemma links the sign of A(p,q)
and B(p,q).

Lemma 2
Suppose 4(p,q) # 0 V(p,q) € R3,.

B(p,q) >0 = A(p,q) < 0.

We now proceed to consider scoring rules
that are non-quasilinear.

For such rules we must have at least one of
the following: S,, # 0, S,y # 0.
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Let §'(6) = S('(0).4'(6))
and $%(0) = S"(p"(0),4"(0)).

In the first-score and second-score auctions
the equilibrium scores quoted by a firm with
type 0 is S'(0) and S”(0) respectively.

Proposition 3

If A(p,q) # 0 V(p,q) € R2, then S/(0) < S(0)
Vo < [6,0).

Also, <L S7(0), - S"(0) < 0 V0 < (0,0).

’do > do
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The equilibrium score quoted by any type
0 € [0,0) is strictly higher in the
second-score auction as compared to the
equilibrium score 1in first score-auction.

This 1s analogous to the standard benchmark
model where for any particular type, the bid
in the second-price auction is always higher
than the bid in the first-price auction.

Proposition 3 also shows that equilibrium
scores are decreasing in type, 6. This means
the winner 1n any auction 1s the firm with the
lowest type (least cost).

That 1s, the symmetric equilibria are always
efficient.
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Proposition 4

(i) If A(p,q) > 0 V(p,q) € R2, then
q'(0) > q"(0) V0 € [0,0). Also,

dq'(0)  dq"(9) 2
- >0 V0 e (6,0).

(i) f A(p,q) < 0 V(p,q) € R2, then
q'(0) < q"(0) VO € [0,0). Also,

dg'(0)  dq"(9) 7
- <0 V0 € (6,0).

(iii) If A(p,q) = 0 V(p,q) € R2, then
q'(0) = q"'(0) VO € [0,0). Also,

dg'(0) dq"(©0) _ 2
o @ =0 Voe(6,0).
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Proposition 5
Suppose 4(p,q) # 0 V(p,q) € Ri,.

(i) If B(p,q) < 0 V(p,q) € R2, then
pl(0) > p'(0) VO € [0,0). Also,

dp'(0)  dp"(0) a
O &0 5 0vh e (8,0).

(i) f B(p,q) > 0 V(p,q) € R2, then
pl(0) < p'(0) VO € [0,0). Also,

dp'(0)  dp"(0) 2
O &0 0vh e (0,0).

(iii) If B(p,q) = 0 V(p,q) € R2, then
pl(0) = p"(0) VO € [0,0]. Also,

dp'(0)  dp"(0) _ 2
O 40— 0vh e (0,0).
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From propositions 4 and 5 the following
emerge:

® Sign of the term A(p, q) plays a crucial role in
determining for characterisation of
equilibrium quality quoted in any auction.

® Sign of the term B(p,q) plays a crucial role in
determining for characterisation of
equilibrium price quoted in any auction.

@® Note that lemma 2 links the sign of A(p,q)
and B(p,q).
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From lemma 2 we get
A(p,q) > 0 = B(p,q) < 0.

The above in combination with propositions 4
and 5 means that A(p,q) > 0 implies
q'(0) > ZH(Q) and p'(0) > p’(0). Also

dq'(®) ~ dg"'(0) d'©®) dp(®)
do > db > 0 and do > db > 0.

Similarly, B(p,q) > 0 = A(p,q) < 0 and we
have ¢/(0) < ¢"(0) and}of(e) < p(0). Also

dq'(0) ~ dg"'(0) d(0) dp" )
do > db < 0and do > db <0
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We now provide a few examples to illustrate
propositions 4 and 5.

The point is to show that scoring rules and
cost functions exist that satisfy all our
assumptions and the conditions of
propositions 4 and 5.
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We first consider conditions mentioned in
proposition 4.

1. S(p.q) = £ and C(q,0) = +-¢* + 0. In this
example A(.) > 0V(p,q) € R2,.

2. S(p,q) = 10g —p? and C(q,0) = g+ 6. In
this example 4(.) < 0 V(p,q) € R2,.

3. S(p,q) =e?” and C(q,0) = %qz +0. In
this example 4(.) = 0 V(p,q) € R2,.
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We now consider conditions mentioned in
proposition 5.

1. S(p.q) = £ and C(q,0) = +-¢* + 0. In this
example B(.) < 0V(p,q) € R2,.

2. S(p,q) =e??—-pand C(q,0) = %q +0. In
this example B(.) > 0 V(p,q) € R2,.

3. S(p,q) = 10g —p? and C(gq,0) = g + 0. In
this example B(.) = 0 V(p,q) € R2,.
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We now proceed to discuss the impact of
increase in n (the number of bidders) on
equilibrium quality and price in both auctions.

For any given 0, let ¢/(n;0) and ¢“(n;0) be the
quality quoted in first-score and second-score
auctions respectively when the number of
bidders is n.

Similarly, for any given 0, let p'(n;60) and
p'l(n;0) be the price quoted in first-score and
second-score auctions respectively when the
number of bidders is n.
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Proposition 6

Foralln > m

(i) ¢"(n;0) = q"(m;0).

(i) f A(p,q) > 0 V(p,q) € R2, then ¢/ (n;0) <
q'(m;0).

(iii) If A(p,q) < 0 VY(p,q) € R%, then
q'(n;0) > q'(m;0).
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Proposition 7

Suppose A(p,q) + 0 V(p,q) € R2,. Then for
alln > m

(i) p"(n;0) = p"(m;0).

(i) If B(p,q) = 0 V(p,q) € R2, then p/(n;0) =
p'(m;0).

(ii) If B(p,q) > 0 V(p,q) € R2, then p!(n;0) >
p'(m;0).

(iv) If B(p,q) < 0 V(p,q) € R2, then p!(n;0) <
p'(m;0).
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The next proposition explores how the
equilibrium score quoted changes with an
increase in the number of bidders.

Let §'(n;0) = S(p'(n;0),9'(n;0))
and §"(n;0) = S(p"(n;0),9"(n;0)).

Proposition 8

(i) For all n > m, S"(n;0) = S"(m;0).
(i) For all n > m, S'(n;0) > S'(m;0).
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In the second-score auction the quality and
price quoted in equilibrium are independent
of the number of bidders. Consequently, the
score quoted 1n equilibrium is invariant with
respect to the number of bidders.

This 1s similar to the second-price auction in
the benchmark model, where, regardless of

the number of bidders, all bidders bid their
valuations.

In the first-score auction as the competition
intensifies (n increases) the score quoted by
any type increases. This 1s in line with the
conventional wisdom which suggests that any
increase 1in competition should induce a
bidder with type 6 to quote a higher score.

This 1s also similar to the first-price auction
1n the benchmark model where bids increase
with the number of bidders.
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Lemma 3

(i) In a first-score auction the expected score
is as follows:

- | j S'0)1(0)d0 = | Z S'@).a/ @), (0)d0
= S(/(®).4'®))
N IZFI(Q)U +7'(0))S,(p'(0),q'(0))do

where

. n—1
y(0) = (I—F(H))”l J- (1-F(@))" dt
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(i) In a second-score auction the expected
score is as follows:

2 = [ 5"0)/20)d0 = | 50" @),4"@)):0)d0
- 5" (@),4"®))
- [ F20)5,0"©0),9"0))d0
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Lemma 4

[ RO+ @)
- szz(e)de

where

y(0) = F(2))" ' dt

] o
(1-F(@©))"" IG(I
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From lemma 1 we know p’(9) = p"(#) and
q'(0) = q"(0).

This means

S('(0).4'(0)) = S("(0),4"(0)).

Using this and lemma 3 one clearly gets that
to compare >/ and X/ we need to compare
the following terms:

IZ F1(0)(1 +y'(0)[-S,(p(0),4'(0))]d6

and [ F2(0)1-5, 2" (0).4"(0))1db.
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Note that if the scoring rule is quasilinear
(i.e. S(p,q) = ¢(q) —p) then S, = —1.

Hence, from lemmas 3 and 4 the next result
follows.

Proposition 9
If the scoring rule is quasilinear then X! = X7,

@® The above result is well known. For scoring
auctions this 1s the analogue of revenue
equivalence theorem of the canonical model.
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We now proceed to provide our main results
on expected scores when the scoring rules
are non-quasilinear.

We show that such results will depend on the
curvature properties of the scoring rule and
the properties of the distribution function of
types.
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We first show the possibility of equivalence of
expected scores even with non-quasilinear
scoring rules.

Proposition 10
If V(p,q) € R%, A() # 0and S,y 5 =Sy, = 0
then X/ = 4.

We illustrate proposition 10 with a couple of
examples.
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In one example S,, = 0 and in the other
example S,, # 0.

Example 3:

Let S(p,q) = 10q — p?, C(q,0) = g+ 0 and 0 is
uniformly distributed over [1,2]. The scoring
rule is non-quasilinear and satisfies all our
assumptions Here it can be easily shown that

I _ I _
== 2

Example 4:
Let S(p,q) = e?? —p, C(q,0) = q +0andfis
uniformly distributed over [ <, - ] The

scoring rule is non-quasilinear and satisfies
all our assumptions. Here we have

I _ 11
=3xl=1
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From proposition 10 we get that

N Spp% —S,, + 0 for some (p,q) € R2,.

Now suppose the scoring rule is such that

Spp% - S,, = 0 for some (p,q) € RZ,.

We now show that a restriction on the
distribution function of types ensures X! < X%,
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Proposition 11

Suppose the scoring rule, S(.), is

non-quasilinear and Spp% —S,; + 0 for some

(p,q) € R2.Iff(0) < 0forall 6 € [0,0] and
f(0) is large enough then X/ < X7,

® Proposition 11 is interesting as it
demonstrates the need to put restrictions on
the distribution function of types to get a
ranking of expected scores. This stands in

sharp contrast to the other papers in the
literature.
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@® It may be noted that most non-quasilinear
scoring rules, including the quality over price

ratio, satisfy the restriction Spp% - S, # 0.

Also, the restriction, f'(0) < 0, is satisfied by
many distribution functions (including the
uniform distribution).

@® As such, the expected scores will be strictly
higher with second-score auctions for most
scoring rules and many distribution functions.

@ This has interesting policy implications as
well. In real life second-score auctions are
never used. Our result suggests that in a large
number of cases an auctioneer will be better
off using second-score auctions than using
first-score auctions.
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We now illustrate this result with two
examples. We take the ‘quality over price’
scoring rule and the same quadratic cost
function in both examples.

Note that the restriction Spp% —Spg #01s

satisfied for this scoring rule and cost
function.

The distribution function of types are different
In the two examples.
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Proposition 11 demonstrates that when

Spp% - S,, = 0 for some (p,q) € RZ, then

%! > £ implies that at least one of the
following is true: (i) /' (8) > 0 or (ii) /{0) is not
large enough.

In example 5 we take a uniform distribution,
where /' (0) = 0 and show that ! < X%,

In example 6, we take a different distribution
function where /' (.) > 0 and we get X! > X7,
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Example 5

Let S(,q) = + and C(q,0) = %qz +0.

Suppose 6 be uniformly distributed over [1,2]
and n = 2.

For this distribution we have

£1(0) =22 —-0) and /2(0) = 2(0 - 1)
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First-score auction:
price: p'(0) =2+06
quality: ¢/(0) = J2 + 60

g0 _
POy 20

Expected score:
! = [75'(0)f1(0)d0 = 0.54872

score: s/(0) =

Second-score auction:
price: p’(0) = 20
quality: ¢”(0) = 20

¢"0) _ 1

PO /20
Expected score:
7 = [*57(0)f2(0)d0 = 0.55228

score: s(0) =
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Example 6

Let S(,q) = + and C(q,0) = %qz +0.

Now suppose n = 2 and 6 is distributed over
[ 1.2, 1.203731 | with density f{x) =

500x° — 600 and distribution function
F(x) = 125x% — 600x + 222

For this distribution we have
fi = 2(—125x4 + 600x — %)(soox3 _ 600) and

f> = 2(125x* - 600x + 2304 ) (500x° - 600)
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First-score auction:
2595_30092+ 45980 _ 18197 )

orice: p!(6) = 2(9+ o sl

—1256%+6000—=22>

250°-30002+ 45980 _ 18197 )

ity: ¢'(0) = 0100
quality: ¢'(0) = Jz(e L TR

¢'0  _ |

score: s'(0) =

I
p'(0) 2505 30092+ 45980 18197
2 o+ 10100

—12504+6000—£¥%£l

Expected score:
= f 1203731#(9)]‘1 (0)d0 = 0.6469

)

Second-score auction:
price: p’(0) = 260
quality: ¢”(0) = 20

g"©) _ 1

PO 29
Expected score:
"= f o s(0)f>2(60)d6 = 0.6449

2

score: s(0) =
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The above examples clearly demonstrate that
the distribution of types plays a major role in
the ranking of expected scores.

Even if the scoring rule and cost functions are
the same, the ranking of expected revenues
can get reversed if the distribution of types
are different.

Hence, we need to put restrictions on both
the scoring rule and the distribution function
to get a ranking of expected scores.
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Optimal Scoring auctions
(Che, Rand, 1993)

By the revelation principle any optimal
outcome can be seen as a direct revelation
mechanism.

Proposition:

In the optimal revelation mechanism, the firm
with the lowest 0 is selected; the winning firm
is induced to choose quality go, which for
each 6 maximises

Vg) - ¢(q,0) - )

/0)

co(q,0).
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® In the optimal mechanism quality is distorted
downwards to limit the information rents
accruing to relatively efficient firms, while
competition curtails the absolute magnitude
of these rents.

® Compared to the optimal mechanism, the
naive scoring rule (where S(q,p) = V(g) — p)
entails excessive quality under first and
second scoring auctions. It does so because it
fails to take account of the information costs
(the costs the buyer bears due to his inferior
informational position) associated with
increased quality and thus over-rewards
quality.

@® The above suggests that there is an incentive
for the buyer to deviate from the naive
scoring rule.
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Consider the following scoring rule:
S(g.p) = V(g) —p—Aq
where
¢ Flqo' (1)
Ag= | o
q0® fgo (¢))

for g € [q0(0),q0(0)]
and

qu(ta 451 (t) )dt

Aq = o forg & [qo(0),q0(0)].

1. The rule differs from the true utility
function (naive scoring rule) by the term
Aq.
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2. Roughly speaking, the rule subtracts
additional points from a firm for an
Incremental increase in quality according
to the function Ag.

Proposition:

(i) Under the scoring rule S(¢,p), the
first-score and second-score auctions
implement the optimal mechanism.
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@® With an appropriate scoring rule, the
first-score and second-score auctions can
implement the optimal outcome.

@® As proposition 1 shows, an optimal
mechanism induces a downward distortion of
quality from the first best level to internalise
the information costs of the buyer.

@ This optimal downward distortion can be
implemented by a scoring rule that penalises
quality relative to the buyer’s actual valuation
of quality.
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1. Branco (RAND, 1997): Optimal
mechanisms with one-dimensional quality
and types (that are correlated).

2. Asker and Cantillon (RAND, 2010):
Optimal mechanisms with
one-dimensional quality and
two-dimensional discrete types.

3. Nishimura (2015): Optimal mechanisms
with multi-dimensional quality and
single-dimensional types. Types are |.1.D.
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Further research questions

1. For non-quasilinear scoring rules we
concentrated mainly on single
dimensional quality. Characterisation of
equilibrium and ranking of expected
scores when quality and types are
multidimensional have not been analysed
and is left for future research.

2. Optimal mechanisms (that maximise
expected scores) have been derived in
the literature for quasi-linear scoring rules
(See Che, 1993, Asker Cantillon, 2010
and Nishimura, 2015).

3. However, such optimal mechanisms for
general non-quasilinear scoring rules
have not been analysed. This is an open
guestion and is left for future research.
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