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Cloud Computing

End User’s Perspective
= Expose capabllities

» Compute, storage, prog. platforms, software
" as a Service

 Using standard interfaces, REST/SOAP API

= for on-demand usage

» Use as much or as little as you want without
prior notification

= with pay as you go pricing
 Pay only for what you use

22-Dec-15 RWCC Workshop 2
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Cloud Computing

Service Provider’s Perspective

= Use commodity clusters

* Lowers cost of acquiring hardware off the
shelf, but with lower reliability

= at large data centres
» Large volume amortizes capex, reduces opex

= |ocated near cheap power sources
* Electricity is typically largest opex
= managed by a Cloud fabric

* Reduces management overhead, human
iIntervention

22-Dec-15 RWCC Workshop 3



Bl oreAm:Lab [ O

Cloud Computing is Ubiquitous

= Online services

* Hosting services, content, e.g. Facebook, web
search

= Mobile apps

 Back-end processing, e.g. WhatsApp,
Maps/Directions

= Enterprises

* Public/private Cloud model, Saa$, e.g. EMaill,
CRM

» Cloud Data Centres motivated Big Data
platforms...

22-Dec-15 RWCC Workshop 4
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Cloud Computing for Big Data

= MapReduce was an outcome of /arge web
log data and Cloud data centres at Google

= Designed for “slow"” networks
* Ethernet: Medium latency & bandwidth

= Designed for “Scale out”

* More numbers of slower machines vs. one fast
machine

= Designed to falil

» Commodity servers and disks have lower
reliability

22-Dec-15 RWCC Workshop 5
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Cloud Computing for Big Data:
Map Reduce/Hadoop

= Designed for “slow” networks
* Blocks of data rather than small messages
* Synchronized boundaries

» Designed for “Scale out”

» Distributed file system for cumulative I/0
bandwidth

» Map tasks are trivially parallelizable

= Designed to fall
* Write state to disks for recovery
» Tasks can be restart if slow/failed

22-Dec-15 RWCC Workshop 6
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Cloud Computing for Big Data Platforms

« MapReduce/Hadoop, Apache Spark
« NoSQL, HBase, Hive

« Stream Processing, Storm, Spark Streaming
« Complex Event Processing

» Graph processing, Giraph, GraphX, GraphLab h
» Deep learning, unstructured analytics, Semantic
Web ,

22-Dec-15 RWCC Workshop 7
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Big Data Platforms Designed for Clouds

= Clouds...or Commodity Clusters

* Commodity clusters: Commodity
infrastructure

* Clouds: Commodity infrastructure, on-
demand elasticity & pricing, centralized data
centre, massive scale-out, virtualized

= \What are the unique challenges &
opportunities of Clouds for Big Data?

22-Dec-15 RWCC Workshop 8
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Elasticity for Distributed
Graph Processing

22-Dec-15 RWCC Workshop



Bl oReAM:Lab [ o 1
Distributed Graph Processing

= Sources of massive data: petascale simulations, high
throughput devices, Internet, scientific applications.

= New challenges for analysis: data sizes, heterogeneity,
uncertainty, data quality, temporal variance

___________________________________________________________________________________________________________________________
1

, Bioinformatics i Cybersecurity Social Informatics
Problem: Genome & haplotype | Problem: Detecting anomalies Problem: Discover emergent
\ assembly, Expression Analysis . and bad actors i communities, spread of info.
Challenges: data quality | Challenges: scale, real-time ; Challenges: new analytics

. Graph problems: Eulerian i+ Graph problems: belief |1 routines, uncertainty in data.
| paths, MaxCut, String graphs propagation, community analysis » Graph problems: clustering,

: shortest paths, flows.

HEl

-

'

Image sources: (1) Mihai Pop, Carl Kingsford www.cbcb.umd.edu/ (2) Chau et al. In SIAM Data Mining (2011) (3) www.visualComplexity.com
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Distributed Graph Programming Model

= Jertex-centric Model

* Logic written for a single vertex

* Execution as series of
synchronized supersteps

= \/ertices partitioned across
multiple hosts

= Message passing between —
vertices. Messages delivered at | Superstep 2
superstep boundaries. .

= Parallelism at vertex level
= E.g. Google Pregel, Apache Giraph

Superstep 3
—» Message —> Edge

- But, large communication cost, ‘Vertevated toHalt [ Host Machine

more time to conver oe Max Vertex Value using Vertex-centric
Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing.” ACM SIGMOD 2010.

11
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Distributed Graph Programming Model
= Subgraph-centric Model S—

» Subgraph: Weakly Connected 2 )

Component (WCC) within a
partition o

= Logic written for a subgraph Sl

» Message passing between
subgraphs

- Parallelism at subgraph level

= Less communication cost, e
~faster convergence e

= E£.g. GoFFish, Blogel, Giraph++ @755 .. £ vox

Max Vertex Value using Subgraph-centric

Y. Simmhan, et al., Goffish: A sub-graph centric framework for large-scale graph analytics, EuroPar, 2014.
Yan, Da, et al. Blogel: A block-centric framework for distributed computation on real-world graphs, ULDB 2014 12
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Vertex-centric Graph Processing
PageRank*

public void compute(Vertex<Long, Double, Float> vertex,
Iterable<Double> messages) throws IOException {

if (getSuperstep() >= 1) { // update my PR from remote msgs

double sum = 0;
for (double m : messages) sum += m.value;
double vertexValue = 0.15f/vertexCount() + 0.85f * sum;

vertex.value = vertexValue;

if (getSuperstep() < MAX SUPERSTEPS) { // send my PR
long edges = vertex.getNumEdges();
sendMessageToAllEdges(vertex, vertex.value / edges);

} else
vertex.voteToHalt();

*Apache Giraph PageRank Code
22-Dec-15 RWCC Workshop 13
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Subgraph-centric Graph Processing
Dijikstras / SSSP (Step 0)

Compute (<Messages> M _arr){
if Superstep ==
dist[v] = o V v
if source is present
Rootset = {source}
dist[source] = ©

Run Dijkstra’s on RootSet
Send Messages to Remote Vertices
VoteToHalt()

}

Subgraph 3 Host 1

Note: Edges are Unweighted

Subgraph 2

Host 2

Superstep 0
RootSet : { A }
RemoteSet : { E }

Y. Simmbhan, et. Al., “Goffish: A sub-graph centric framework for large-scale graph analytics,” EuroPar, 2014. 14
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Subgraph-centric Graph Processing
Djikstras /SSSP (Step 1)

Compute (<Messages> M arr){

Subgraph 2

else
for each message in M_arr
if dist[m.vertex] < m.value
dist[m.vertex] = m.value
Rootset <- Updated vertices Superstep 1

@ @ RootSet : { E }
L] R : {D,H
Run Dijkstra’s on RootSet emoteSet : {D,H}

Send Messages to Remote Vertices Subgraph 3

VoteToHalt()
} Note: Edges are Unweighted

Host 1

22-Dec-15 RWCC Workshop 15
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Subgraph-centric Graph Processing
Djikstras /SSSP (Step 2)

Compute (<Messages> M _arr){

else
for each message in M_arr
if dist[m.vertex] < m.value
dist[m.vertex] = m.value
Rootset <- Updated vertices

Run Dijkstra’s on RootSet
Send Messages to Remote Vertices
VoteToHalt()

¥

Subgraph 3 Host 1

Note: Edges are Unweighted

22-Dec-15 RWCC Workshop

Subgraph 2

Host 2

Superstep 2

RootSet : {

D,H }
RemoteSet : {

3

H
}

16
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Stationary vs. Non-stationary Graph
Algorithms

= Stationary algorithms, e.g. PageRank

 Same amount of work done in each
iteration, by each worker

* Uniform resource utilization

» Non-Stationary algorithms, e.g. SSSP

* Different amount of work done in each
iteration, by each worker

» \Variable resource utilization
* Qver-allocation (or) Under-performance

Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis, “Mizan: a system for dynamic load
balancing in large-scale graph processing,” in EuroSys, 2013

22-Dec-15 RWCC Workshop 17
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CPU Usage Across Iterations

= Orkut Graph (3M vertices, 234M edges)
= 40 cores, 5 machines

100 y— T
— Wasted Wasted B BFS EBC l
X 90 resources resources
§ 20 | | PageRank
> < >
w 70
o
S 60
S 50
e
S 40
E
= 30
2
o 20
? 10 I I
0 L
15 16

Superstep
Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
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Clouds Elasticity for Graph Processing

= Graph processing load changes with each
iteration

= Under-utilization & Higher cost to utility

* Challenge: Can we use "Elasticity” to
increase utilization?

1. Find the load in an iteration & Find the
partitions of the graph that are active

2. Use only as many VMs as needed & Place
active partitions on live /Ms

22-Dec-15 RWCC Workshop 19
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1) Graph with 13 vertices/13 edges (small %
gray circles & lines) divided into three ©
Partitions (yellow rectangles). w

2) Four Subgraphs (farge purple circles,
labeled 1-4 ) identified within the partitions.

3) Meta-graph formed has four subgraphs as
meta-vertices & three meta-edges (purple
dashed line) connecting them.

m One partition placed in each VM for execution m BFS from
source vertex in Subgraph 2 causes only VM 2’s usage in
Superstep 1; VM 1 & 3 are idle m Subgraphs 1 & 3 are active in
Superstep 2, causing VMs 1 & 3 to be used, and VM 2 is idle m
Subgraph 4 active in Superstep 3 causes only VM 3 to be used

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
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Meta-Graphs for Algorithm Modelling

= “Meta-Vertices" are subgraphs
= [teration on which a meta-vertex in

active
(145 }.5.6.7,8,9,10) CE:

,5,6,7,8,9,10}

6480
Analysis of Subgraph-centric Distributed Shortest

Path Algorithm, Dindokar, Choudhury & Simmhan, 4,5,6,?,819,1 0}
IPDPS ParLearning workshop, 2015 —>
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Dijkstra's Prediction: Expected vs. Actual

2M/2.7M VV/E 450 1M/5M V/E 2.4M/5M V/E
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Actual time (ms)

(a) California Road Network (CARN) (b) Web Google (WEBG) (c) Wiki Talk (WIKI)

e Dijkstra’s called exactly at superstep corresponding to traversal depth.

® Expected and observed time complexity matches closely.

e Outliers: Subgraph with source and subgraph with large number of
incoming messages

*Expected time is normalized by multiplying it by a constant o
*Plot showing only non tiny subgraphs ( |U| > 100) 22
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Graph Partition Placement on VMs

= How we can reduce the overall monetary
cost for running the graph algorithm

= with minimal impact on the makespan of the
algorithm,

" using partition placement strategies on
elastic VMs

= based on their activation schedule across
supersteps,

= as compared to a traditional hashing of
partitions onto a static set of VMs.

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015

22-Dec-15 RWCC Workshop 23
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Default Strategy, Static Placement

= Partitions distributed across fixed count of VMs

= Uniform number of partitions per VM
» Load balanced for stationary algorithm

= Partitions placement is static across iterations

6 VMs used over 3 iterations 1/6 +5[6 +3/6 =

50% usage

Step O Step 1 Step 2 >4,
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First Fit Decreasing (FFD)

= Number of \/Ms per iteration depends on load
» Elastic scale outand in

= Pack active partitions on available VMs
» Bin packing/knapsack problem

= Partition movement cost between iterations

4 VMs used over 3 iterations 1/3+5/6 +3[3 =
75% usage

Step O Step 2
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Max Fit with Pinning (MF/P)

= Number of VMs per iteration depends on load
» Partial elastic scale out and in

= Partitions placement is static once pinned
e No movement cost
* Load distribution can be unbalanced

5 VMs used over 3 iterations

1/3 +5/6 + 3/6 =

60% usage

Step O Step 1 Step 2 -6
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Under-utilization (Jess is better)
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(g) Under Utilization for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
22-Dec-15 RWCC Workshop 27
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Monetary Cost (/ess is better)

mLIV)/8P W USA/8P 1 Orkut/40P

B
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w
o
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o
o
co

VM Billed Core-Mins
M
o

e

Default OPT FFD MF/P

(d) Core-Mins for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
22-Dec-15 RWCC Workshop 28
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Makespan (/ess is better)

W LIV)/8P W USA/SP 71 Orkut/40P

co
o

72
68

o)
o

54 26

Makespan (Seconds)
M EaN
o o

_|
Default OPT FFD MF/P LA/P FFD-DM

(a) Makespan for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
22-Dec-15 RWCC Workshop 29
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Edge+Cloud for
Event Processing in Io1

"Fog Computing™?
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Big Data in the Age of IoT

PS1 z‘e[escaée

Large
Hadron
Collider

) 102 Sources

TB’s Data
Days to Proc.

Few Instruments,
Large Data Volume

Y,
1105 Sources
GB’s Data

Hours to Proc.

Many Devices,
Volume & Velocity
J

108 Sources
MB’s Data
<Mins to Proc.

Numerous Sensors,
High data Velocity

22-Dec-15 RWCC Workshop 31
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[ISc Smart Water IoT Project

= Plan pumping operations for reliability
* Avoid water running out/overflow
* It can take 12 hrs to fill a large OHT
 Water scarcity for several weeks in the year

= Provide safer water
* Leakages, contamination from decades old N/W

= Reduce water usage for sustainability

* ISc avg: 400 Lit/day, Global std: 135 Lit/day
» Lack of visibility on usage footprint, sources
» Rain water harvesting, Water recycling plant

= Lower the cost
* Reduce water use & energy cost for pumping

22-Dec-15 32
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Objectives

1. Can we use loT & Big Data technologies
to make campus “smarter”?
* i.e. the “infrastructure”, not the people ©

* More efficient, reliable & safe resource
delivery & management

* Initial Case Study: Water management

2. And in the process, understand the
technology and improve on it?
* For the Indian context!

22-Dec-15 RWCC Workshop 33



Yo Campus %7 Over Head Tank (OHT)
Area: 440 Acres, |
8 Km Perimeter
50 buildings:
Office, Hotel,
Residence, Stores

~—7- Ground Level Reserv. (GLR)
> Inlet Points

10,000 people _/L
10MW Power sl |
Consumed

40 Lakh Lit/Day
\Water Consumed

OHT 3
GLR 13
Inlet 4

22-Dec-15 RWCC Workshop
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Over Head Tanks (OHT)

AL o ) LR v

TPH (near Mechanical)  )NT Auditorium  Chemical Stores Opposite to CENSE

Ground Level Reservoirs (GLR)

Opposite to Boys Hostel - ﬂar l\/‘l‘ss Near R Block

CENSE
35
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Open, integrated & extensible IoT Technology Stack
for Smart Campus Resource Management

Hybrid sensing
Adaptive networking
Realtime Analytics

W N o=

making

» Experts to Close the Loop from

Network to Knowledge

» \/alidate using real-world
deployment @ /15¢

22-Dec-15 RWCC Workshop

Operationf

Scientist, Operator & Consumer

> = e [ o
A B et - et it
‘ ;
\.' Ly

Decisions[i@n =5 &~ o7

Science-driven decision

Leakage &
Contamination
Detection

Pumping §;
Optimizatiory

Demand
Prediction i

Big Data Framework on Cloud

DataAnalytics & Event Processing Bad
[ e

Information Ingest Pipeline & Stream Processing

<> ﬁ e1|~ork 0,05'

Policy

T+ 4

Collect events &

Archive QIS Network .
Eiii Map Monitoring & observations
Management

Org
Info

Infra
Info

Static Data

Dynamic Data




Low-Cost Sensors

= Based on commodity H/W,
iIn-house design, QC
* Robust to external use
= O(min) sampling

= \Water level sensors
* Water present in OHT, GLR
* Rate of inflow, outflow NINGS

= \Water Quality
* TDS, temperature
* Physical, not chemical

22-Dec-15 RWCC Workshop 37
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Crowd-sourced Sensing

~

H KH NO, N

...’f °,::-‘ 0
gl . =% \ - |

GH P

-

© Jose Gomez-Marquez, MIT

= Cost-effective quality sensing thru’ Crowd Sourcing
 Paper-based design allows diverse users to test water
* Report via photo of card & Smart Phone App

» A simple colorimetric, diagnostic developed by MIT to test pH,
calcium (Ca2+), magnesium (Mg2+), carbonates (C032-),
bicarbonates (HCO-3), and nitrites (NO-2 and NO-3)

= Other ideas: App-based OCR Sensing for water meter

22-Dec-15 RWCC Workshop 38



COMMUNICATION

@® |cvel Sensor
> Flow Sensor
*  Relay

® Gateway

—— Primary Link (Sub
GHz)

—— Secondary Link
(Zigbee)

22-Dec-15

N AL RN

O MR CHRCL)

RWCC Workshop

e East Block
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Fast Data Processing

Complex Event Processing (CEP)

= Extract info from realtime, event sources
to help decision-making

* Specify queries on situations, patterns, causal
relationships

* Online analysis of 1000’s of Events per Sec

<Timestamp, Height>

Critical []

S?II:i Thi
Events ™"
0

Outliers

Time
*Data from Prof. Bharadwaj Amrutur, ECE, IISc

SELECT e FROM STREAM dese_oht WHERE e.height > 907%

SELECT e_hi, e _lo FROM STREAM rbccps_oht
WHERE (e_hi.height - e_lo.height) > 5%
WITHIN WINDOW(5mins)
22-Dec-15 RWCC Workshop 40
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CEP Water Analytics Pipeline

#1- Outlier Screening | #2- Outlier Screening R #3- Average | #4- Qutlier Screening
1 2 3
#8.1- Time Window #7.1- Time Window #6- Critical Minimum #5- Critical Maximum

‘. | l l

2- Critical D
#8.2- Time Window #7.2- Critical Drop
Rate

| l

#8.2- Per Capita Rate
Stream

l

22-Dec-15 RWCC Workshop 41
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Sample CEP Queries

1. Outlier Screening 1 : Only allow valid streams in the
first filtering - that are non negative and below the tank height.
from HeightEventStream [height = 0.0 and height <
tankHeight], insert into NonOutlierStreaml|.

2. Outlier Screening 2 : Only allow those streams with
water height that fall within 4 times the statically computed
standard deviation either way.
from NonQutlierStreaml [height > -4 * stdDev and height <
4 * stdDev], insert into NonOutlierStream?2.

3. Average stream : Find the average of the water height aggregation
of streams in an event window length of 3 to obtain a
reasonable measure of what range the height currently is at.
from  NonOutlierStream2  #  window.length(3),  select
avg(height) as avgHrt, insert into AvgStream.

Sanity Checks

22-Dec-15 RWCC Workshop 42
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Sample CEP Queries

5. Critical Maximum : When height of the water is above
90 of tank height, the stream is flagged as a critical stream
and tied to trigger an output/action to rectify the critically high
water level that may result in an overflow and thus wastage.

Analytics  from NonOutlierStream [height > 0.9 * tankHeight], insert
into CriticalMaxStream.

6. Critical Minimum : When height is below 10 of tank
height, the stream is flageged as a critical stream and tied to
trigger an output/action to rectify the critically low water level
that may result in an underflow compared to requirements.
from NonOutlierStream [height < 0.1 * tankHeight] , insert
into CriticalMinStream.

22-Dec-15 RWCC Workshop 43



B DREAM:Lab

Big Data Platform on Edge+Cloud

Message Streaming

Broker Data Ingest Data Archive
Apache Apollo Apache Storm HBase
Sensing & Edge
Analytics Complex Evt.

Raspberry
Pi

Processing
Siddhi

Interactive
) Graph Analytics [l Batch Analytics
Analytics :
GoFFish Hadoop
Apache Spark

Android Analytics as a Service
: Dashboard &
Desktop Ll Viz. Logic

Client Device

Edge RwWCC Workshop  Cloud hh
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Analytics from Edge to Cloud
= Traditional CEP Processing has been centralized

= But loT Event sources are distributed
CEP only on Cloud? CEP only on Edge?

i i Limited Expressivity &
Compute Capability
Need to integrate realtime
with offline Big Data

= CEP in a distributed IoT environment
 Capable edge devices, Smart Phones
» Heterogeneous computing: Cloud + Edge
» Distributed realtime analytics for loT

Can we process event streams across Cloud & edge
through efficient query partitioning to meet QoS Goals?

22-Dec-15 RWCC Workshop 45
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Edge+Cloud Sequence of Ops

Edge Cloud
ue
CEPLite Query
Planner
. Register
_Cloud query_|i[“cep query "
M Poll for CEP Segment Ji| Pipetine
o Qe Edge Query
SENSOR | Subscribe To Segment
. Events N Stream -
i Incoming Event : : :
.w)i Stream i : :
SENSOR Incoming Event_
stream CEPLite Output /
Siddhi Input Events |! |Siddhi & Pipeline Decision
T Output Events Engine
] REST/CoAP Service H H

Event Processing across Edge and the Cloud for Internet of Things Applications, Nithyashri

Do Govindarajan, Yogesh Simmbhan, Nitin Jamadagni and Prasant Misra, COMAD, Poster, 2014 LE
zz-0Dec-15
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Optimization Problem

= Match a query Q within time
T of input events

= Constraints
* Network latency
 Data privacy
» Compute capability
* Expressivity

= Objective to Minimize
* Execution co%ts
* Energy consumption

22-Dec-15 RWCC Workshop 47
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Solution Approach

= Solve optimization problem using dynamic
programming
» Model query as a DAG.
» Decide edge cut that meets objectives.
= Distributed CEP on Android & Cloud”
» CEPLite engine on Android
» Full featured Siddhi CEP on Cloud
= Deployment on IISc for Smart Campus
» Sustainable water management
» Tank Overflow, Refill, Leakages, Quality

22-Dec-15 RWCC Workshop 48
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Summary

22-Dec-15 RWCC Workshop 49
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sSummary

= Clouds are de facto computing platforms

* "Cloud first” & "Mobile first” for most new
applications

= Big Data platforms are developed for
Clouds & Commodity Clusters

* Similar, but distinct distributed systems

= Clouds offer unique research challenges
» Elasticity, cost, power, privacy, latency

22-Dec-15 RWCC Workshop 50
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