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Cloud Computing
End User’s Perspective
 Expose capabilities 
• Compute, storage, prog. platforms, software
 as a Service
• Using standard interfaces, REST/SOAP API
 for on-demand usage
• Use as much or as little as you want without 

prior notification
with pay as you go pricing
• Pay only for what you use
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Cloud Computing
Service Provider’s Perspective
 Use commodity clusters
• Lowers cost of acquiring hardware off the 

shelf, but with lower reliability
 at large data centres
• Large volume amortizes capex, reduces opex
 located near cheap power sources
• Electricity is typically largest opex
managed by a Cloud fabric
• Reduces management overhead, human 

intervention
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Cloud Computing is Ubiquitous
 Online services 
• Hosting services, content, e.g. Facebook, web 

search
Mobile apps 
• Back-end processing, e.g. WhatsApp, 

Maps/Directions
 Enterprises 
• Public/private Cloud model, SaaS, e.g. EMail, 

CRM
 Cloud Data Centres motivated Big Data 

platforms…
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Cloud Computing for Big Data
MapReduce was an outcome of large web 

log data and Cloud data centres at Google
 Designed for “slow” networks
• Ethernet: Medium latency & bandwidth
 Designed for “Scale out”
• More numbers of slower machines vs. one fast 

machine
 Designed to fail
• Commodity servers and disks have lower 

reliability
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Cloud Computing for Big Data: 
Map Reduce/Hadoop
Designed for “slow” networks
• Blocks of data rather than small messages
• Synchronized boundaries
Designed for “Scale out”
• Distributed file system for cumulative I/O 

bandwidth
• Map tasks are trivially parallelizable
Designed to fail
• Write state to disks for recovery
• Tasks can be restart if slow/failed
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Cloud Computing for Big Data Platforms
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Big Data Platforms Designed for Clouds

 Clouds…or Commodity Clusters
• Commodity clusters: Commodity 

infrastructure
• Clouds: Commodity infrastructure, on-

demand elasticity & pricing, centralized data 
centre, massive scale-out, virtualized

What are the unique challenges & 
opportunities of Clouds for Big Data?
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Elasticity for Distributed 
Graph Processing
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Distributed Graph Processing
 Sources of massive data: petascale simulations, high 

throughput devices, Internet, scientific applications.
 New challenges for analysis: data sizes, heterogeneity, 

uncertainty, data quality, temporal variance
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Cybersecurity
Problem: Detecting anomalies 

and bad actors

Challenges: scale, real-time

Graph problems: belief 

propagation, community analysis

Bioinformatics
Problem: Genome & haplotype 

assembly, Expression Analysis

Challenges: data quality

Graph problems: Eulerian 

paths, MaxCut, String graphs

Social Informatics
Problem: Discover emergent 

communities, spread of info.

Challenges: new analytics 

routines, uncertainty in data.

Graph problems: clustering, 

shortest paths, flows. 

Image sources: (1) Mihai Pop, Carl Kingsford www.cbcb.umd.edu/ (2) Chau et al. In SIAM Data Mining (2011) (3) www.visualComplexity.com

http://www.cbcb.umd.edu/
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Distributed Graph Programming Model
 Vertex-centric Model 
• Logic written for a single vertex
• Execution as series of 

synchronized supersteps
 Vertices partitioned across 

multiple hosts
 Message passing between 

vertices. Messages delivered at 
superstep boundaries.

 Parallelism at vertex level
 E.g. Google Pregel, Apache Giraph
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Distributed Graph Programming Model
 Subgraph-centric Model 
• Subgraph: Weakly Connected 

Component (WCC) within a 
partition

 Logic written for a subgraph 
• Message passing between 

subgraphs 
• Parallelism at subgraph level
 Less communication cost, 

~faster convergence
 E.g. GoFFish, Blogel, Giraph++
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Vertex-centric Graph Processing
PageRank*

public void compute(Vertex<Long, Double, Float> vertex, 
Iterable<Double> messages) throws IOException {

if (getSuperstep() >= 1) { // update my PR from remote msgs
double sum = 0;
for (double m : messages)  sum += m.value;
double vertexValue = 0.15f/vertexCount() + 0.85f * sum;
vertex.value = vertexValue;

}

if (getSuperstep() < MAX_SUPERSTEPS) { // send my PR
long edges = vertex.getNumEdges();
sendMessageToAllEdges(vertex, vertex.value / edges);

} else
vertex.voteToHalt();

}

22-Dec-15 RWCC Workshop 13



DREAM:Lab

Subgraph-centric Graph Processing
Djikstras / SSSP (Step 0)
Compute (<Messages> M_arr){
if Superstep == 0
dist[v] =  ∞  ∀ v 
if source is present
Rootset = {source}
dist[source] = 0

else
for each message in M_arr
if dist[m.vertex] < m.value 

dist[m.vertex] = m.value
Rootset <- Updated vertices

Run Dijkstra’s on RootSet
Send Messages to Remote Vertices
VoteToHalt()

}

14

Superstep 0
RootSet : { A }
RemoteSet : { E }
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Subgraph-centric Graph Processing
Djikstras / SSSP (Step 1)
Compute (<Messages> M_arr){
if Superstep == 0
dist[v] =  ∞  ∀ v 
if source is present
Rootset = {source}
dist[source] = 0

else
for each message in M_arr
if dist[m.vertex] < m.value 

dist[m.vertex] = m.value
Rootset <- Updated vertices

Run Dijkstra’s on RootSet
Send Messages to Remote Vertices
VoteToHalt()

}
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Superstep 1
RootSet : { E }
RemoteSet : {D,H}
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Subgraph-centric Graph Processing
Djikstras / SSSP (Step 2)

Compute (<Messages> M_arr){
if Superstep == 0
dist[v] =  ∞  ∀ v 
if source is present
Rootset = {source}
dist[source] = 0

else
for each message in M_arr
if dist[m.vertex] < m.value 

dist[m.vertex] = m.value
Rootset <- Updated vertices

Run Dijkstra’s on RootSet
Send Messages to Remote Vertices
VoteToHalt()

}
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Superstep 2
RootSet : { D,H }
RemoteSet : { }
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Stationary vs. Non-stationary Graph 
Algorithms
 Stationary algorithms, e.g. PageRank
• Same amount of work done in each 

iteration, by each worker
• Uniform resource utilization
Non-Stationary algorithms, e.g. SSSP
• Different amount of work done in each 

iteration, by each worker
• Variable resource utilization
• Over-allocation (or) Under-performance
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CPU Usage Across Iterations

PageRank

 Orkut Graph (3M vertices, 234M edges)
 40 cores, 5 machines
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Clouds Elasticity for Graph Processing
 Graph processing load changes with each 

iteration
 Under-utilization  Higher cost to utility

 Challenge: Can we use “Elasticity” to 
increase utilization?
1. Find the load in an iteration  Find the 

partitions of the graph that are active
2. Use only as many VMs as needed  Place 

active partitions on live VMs
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Predicting Active Partitions: BFS
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Meta-Graphs for Algorithm Modelling
 “Meta-Vertices” are subgraphs
 Iteration on which a meta-vertex in 

active
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α

Dijkstra's Prediction: Expected vs. Actual
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2M/2.7M V/E 2.4M/5M V/E1M/5M V/E
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Graph Partition Placement on VMs
 How we can reduce the overall monetary 

cost for running the graph algorithm 
 with minimal impact on the makespan of the 

algorithm, 
 using partition placement strategies on 

elastic VMs 
 based on their activation schedule across 

supersteps, 
 as compared to a traditional hashing of 

partitions onto a static set of VMs.
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Default Strategy, Static Placement
 Partitions distributed across fixed count of VMs
 Uniform number of partitions per VM
• Load balanced for stationary algorithm
 Partitions placement is static across iterations
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First Fit Decreasing (FFD)
 Number of VMs per iteration depends on load
• Elastic scale out and in
 Pack active partitions on available VMs 
• Bin packing/knapsack problem
 Partition movement cost between iterations
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Max Fit with Pinning (MF/P)
 Number of VMs per iteration depends on load
• Partial elastic scale out and in
 Partitions placement is static once pinned
• No movement cost
• Load distribution can be unbalanced
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Under-utilization (less is better)
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Monetary Cost (less is better)
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Makespan (less is better)
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Edge+Cloud for 
Event Processing in IoT

“Fog Computing”?
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Big Data in the Age of IoT
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IISc Smart Water IoT Project
 Plan pumping operations for reliability
• Avoid water running out/overflow
• It can take 12 hrs to fill a large OHT
• Water scarcity for several weeks in the year
 Provide safer water
• Leakages, contamination from decades old N/W
 Reduce water usage for sustainability
• IISc avg: 400 Lit/day, Global std: 135 Lit/day
• Lack of visibility on usage footprint, sources
• Rain water harvesting, Water recycling plant
 Lower the cost
• Reduce water use & energy cost for pumping

22-Dec-15 32



DREAM:Lab

Objectives
1. Can we use IoT & Big Data technologies 

to make campus “smarter”?
• i.e. the “infrastructure”, not the people 
• More efficient, reliable & safe resource 

delivery & management 
• Initial Case Study: Water management

2. And in the process, understand the 
technology and improve on it?

• For the Indian context!
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IISc Campus
• Area: 440 Acres,  

8 Km Perimeter
• 50 buildings: 

Office, Hotel, 
Residence, Stores

• 10,000 people
• 10MW Power 

Consumed
• 40 Lakh Lit/Day 

Water Consumed

22-Dec-15 RWCC Workshop 34
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Over Head Tanks  (OHT)
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Ground Level Reservoirs  (GLR)
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1. Hybrid sensing
2. Adaptive networking
3. Realtime Analytics 
4. Science-driven decision 

making

Experts to Close the Loop from 
Network to Knowledge
Validate using real-world 
deployment @ IISc

22-Dec-15 RWCC Workshop

Open, integrated & extensible IoT Technology Stack 
for Smart Campus Resource Management
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Low-Cost Sensors
 Based on commodity H/W, 

in-house design, QC
• Robust to external use
 O(min) sampling
Water level sensors
• Water present in OHT, GLR
• Rate of inflow, outflow
Water Quality
• TDS, temperature
• Physical, not chemical
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Crowd-sourced Sensing

 Cost-effective quality sensing thru’ Crowd Sourcing
• Paper-based design allows diverse users to test water
• Report via photo of card & Smart Phone App
• A simple colorimetric, diagnostic developed by MIT to test pH, 

calcium (Ca2+), magnesium (Mg2+), carbonates (CO32-), 
bicarbonates (HCO-3), and nitrites (NO-2 and NO-3)

 Other ideas: App-based OCR Sensing for water meter
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Fast Data Processing

Complex Event Processing (CEP)
Extract info from realtime, event sources 

to help decision-making
• Specify queries on situations, patterns, causal 

relationships
• Online analysis of 1000’s of Events per Sec
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SELECT e FROM STREAM dese_oht WHERE e.height > 90%

SELECT e_hi, e_lo FROM STREAM rbccps_oht
WHERE (e_hi.height – e_lo.height) > 5% 
WITHIN WINDOW(5mins)

<Timestamp, Height>
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CEP Water Analytics Pipeline
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Sample CEP Queries
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Sanity Checks

Aggregation



DREAM:Lab

Sample CEP Queries
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Analytics
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Big Data Platform on Edge+Cloud
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Analytics from Edge to Cloud
 Traditional CEP Processing has been centralized
 But IoT Event sources are distributed 

 CEP in a distributed IoT environment 
• Capable edge devices, Smart Phones
• Heterogeneous computing: Cloud + Edge
• Distributed realtime analytics for IoT
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Edge+Cloud Sequence of Ops

46
Event Processing across Edge and the Cloud for Internet of Things Applications, Nithyashri 
Govindarajan, Yogesh Simmhan, Nitin Jamadagni and Prasant Misra, COMAD, Poster, 2014
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Optimization Problem
Match a query Q within time 

T of input events
 Constraints
• Network latency
• Data privacy
• Compute capability
• Expressivity
 Objective to Minimize 
• Execution co$ts
• Energy consumption
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Solution Approach
 Solve optimization problem using dynamic 

programming
Model query as a DAG. 
Decide edge cut that meets objectives.

 Distributed CEP on Android & Cloud*

CEPLite engine on Android
Full featured Siddhi CEP on Cloud

 Deployment on IISc for Smart Campus 
Sustainable water management
Tank Overflow, Refill, Leakages, Quality
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Summary
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Summary
 Clouds are de facto computing platforms
• “Cloud first” & “Mobile first” for most new 

applications
Big Data platforms are developed for 

Clouds & Commodity Clusters
• Similar, but distinct distributed systems
 Clouds offer unique research challenges
• Elasticity, cost, power, privacy, latency
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