DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES @
Department of Computational & Data Sciences
Indian Institute of Science, Bangalore DREAM:|ab

Leveraging Cloud Computing
for Big Data Platforms

Yogesh Simmbhan

RWCC Workshop, /NU, New Delhi

22-Dec-15

©DREAM:Lab, 2016 G
This work is licensed under a Creative Commons Attribution 4.0 International License =

http://creativecommons.org/licenses/by/4.0/deed.en_US

_poaeey . 4
Cloud Computing

End User’s Perspective
= Expose capabllities

» Compute, storage, prog. platforms, software
" as a Service

 Using standard interfaces, REST/SOAP API

= for on-demand usage

» Use as much or as little as you want without
prior notification

= with pay as you go pricing
 Pay only for what you use

22-Dec-15 RWCC Workshop 2

_poaeey . 4
Cloud Computing

Service Provider’s Perspective

= Use commodity clusters

* Lowers cost of acquiring hardware off the
shelf, but with lower reliability

= at large data centres
» Large volume amortizes capex, reduces opex

= |ocated near cheap power sources
* Electricity is typically largest opex
= managed by a Cloud fabric

* Reduces management overhead, human
iIntervention

22-Dec-15 RWCC Workshop 3

Bl oreAm:Lab [O

Cloud Computing is Ubiquitous

= Online services

* Hosting services, content, e.g. Facebook, web
search

= Mobile apps

 Back-end processing, e.g. WhatsApp,
Maps/Directions

= Enterprises

* Public/private Cloud model, Saa$, e.g. EMaill,
CRM

» Cloud Data Centres motivated Big Data
platforms...

22-Dec-15 RWCC Workshop 4

Bl oreAm:Lab [O

Cloud Computing for Big Data

= MapReduce was an outcome of /arge web
log data and Cloud data centres at Google

= Designed for “slow"” networks
* Ethernet: Medium latency & bandwidth

= Designed for “Scale out”

* More numbers of slower machines vs. one fast
machine

= Designed to falil

» Commodity servers and disks have lower
reliability

22-Dec-15 RWCC Workshop 5

_piieey o 4

Cloud Computing for Big Data:
Map Reduce/Hadoop

= Designed for “slow” networks
* Blocks of data rather than small messages
* Synchronized boundaries

» Designed for “Scale out”

» Distributed file system for cumulative I/0
bandwidth

» Map tasks are trivially parallelizable

= Designed to fall
* Write state to disks for recovery
» Tasks can be restart if slow/failed

22-Dec-15 RWCC Workshop 6

B DREAN:Lab e @
Cloud Computing for Big Data Platforms

« MapReduce/Hadoop, Apache Spark
« NoSQL, HBase, Hive

« Stream Processing, Storm, Spark Streaming
« Complex Event Processing

» Graph processing, Giraph, GraphX, GraphLab h
» Deep learning, unstructured analytics, Semantic
Web ,

22-Dec-15 RWCC Workshop 7

B D REAN:Lab T 1
Big Data Platforms Designed for Clouds

= Clouds...or Commodity Clusters

* Commodity clusters: Commodity
infrastructure

* Clouds: Commodity infrastructure, on-
demand elasticity & pricing, centralized data
centre, massive scale-out, virtualized

= \What are the unique challenges &
opportunities of Clouds for Big Data?

22-Dec-15 RWCC Workshop 8

DREAM:Lab

Elasticity for Distributed
Graph Processing

22-Dec-15 RWCC Workshop

Bl oReAM:Lab [o 1
Distributed Graph Processing

= Sources of massive data: petascale simulations, high
throughput devices, Internet, scientific applications.

= New challenges for analysis: data sizes, heterogeneity,
uncertainty, data quality, temporal variance

1

, Bioinformatics i Cybersecurity Social Informatics
Problem: Genome & haplotype | Problem: Detecting anomalies Problem: Discover emergent
\ assembly, Expression Analysis . and bad actors i communities, spread of info.
Challenges: data quality | Challenges: scale, real-time ; Challenges: new analytics

. Graph problems: Eulerian i+ Graph problems: belief |1 routines, uncertainty in data.
| paths, MaxCut, String graphs propagation, community analysis » Graph problems: clustering,

: shortest paths, flows.

HEl

-

'

Image sources: (1) Mihai Pop, Carl Kingsford www.cbcb.umd.edu/ (2) Chau et al. In SIAM Data Mining (2011) (3) www.visualComplexity.com

10

http://www.cbcb.umd.edu/

Bl oreAm:Lab [O
Distributed Graph Programming Model

= Jertex-centric Model

* Logic written for a single vertex

* Execution as series of
synchronized supersteps

= \/ertices partitioned across
multiple hosts

= Message passing between —
vertices. Messages delivered at | Superstep 2
superstep boundaries. .

= Parallelism at vertex level
= E.g. Google Pregel, Apache Giraph

Superstep 3
—» Message —> Edge

- But, large communication cost, ‘Vertevated toHalt [Host Machine

more time to conver oe Max Vertex Value using Vertex-centric
Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing.” ACM SIGMOD 2010.

11

Bl DREAM:Lab .0‘1

Distributed Graph Programming Model
= Subgraph-centric Model S—

» Subgraph: Weakly Connected 2)

Component (WCC) within a
partition o

= Logic written for a subgraph Sl

» Message passing between
subgraphs

- Parallelism at subgraph level

= Less communication cost, e
~faster convergence e

= E£.g. GoFFish, Blogel, Giraph++ @755 .. £ vox

Max Vertex Value using Subgraph-centric

Y. Simmhan, et al., Goffish: A sub-graph centric framework for large-scale graph analytics, EuroPar, 2014.
Yan, Da, et al. Blogel: A block-centric framework for distributed computation on real-world graphs, ULDB 2014 12

Bl oreAm:Lab [O

Vertex-centric Graph Processing
PageRank*

public void compute(Vertex<Long, Double, Float> vertex,
Iterable<Double> messages) throws IOException {

if (getSuperstep() >= 1) { // update my PR from remote msgs

double sum = 0;
for (double m : messages) sum += m.value;
double vertexValue = 0.15f/vertexCount() + 0.85f * sum;

vertex.value = vertexValue;

if (getSuperstep() < MAX SUPERSTEPS) { // send my PR
long edges = vertex.getNumEdges();
sendMessageToAllEdges(vertex, vertex.value / edges);

} else
vertex.voteToHalt();

*Apache Giraph PageRank Code
22-Dec-15 RWCC Workshop 13

B DREAM:Lab

Subgraph-centric Graph Processing
Dijikstras / SSSP (Step 0)

Compute (<Messages> M _arr){
if Superstep ==
dist[v] = o V v
if source is present
Rootset = {source}
dist[source] = ©

Run Dijkstra’s on RootSet
Send Messages to Remote Vertices
VoteToHalt()

}

Subgraph 3 Host 1

Note: Edges are Unweighted

Subgraph 2

Host 2

Superstep 0
RootSet : { A }
RemoteSet : { E }

Y. Simmbhan, et. Al., “Goffish: A sub-graph centric framework for large-scale graph analytics,” EuroPar, 2014. 14

B DREAM:Lab

Subgraph-centric Graph Processing
Djikstras /SSSP (Step 1)

Compute (<Messages> M arr){

Subgraph 2

else
for each message in M_arr
if dist[m.vertex] < m.value
dist[m.vertex] = m.value
Rootset <- Updated vertices Superstep 1

@ @ RootSet : { E }
L] R : {D,H
Run Dijkstra’s on RootSet emoteSet : {D,H}

Send Messages to Remote Vertices Subgraph 3

VoteToHalt()
} Note: Edges are Unweighted

Host 1

22-Dec-15 RWCC Workshop 15

B DREAM:Lab

Subgraph-centric Graph Processing
Djikstras /SSSP (Step 2)

Compute (<Messages> M _arr){

else
for each message in M_arr
if dist[m.vertex] < m.value
dist[m.vertex] = m.value
Rootset <- Updated vertices

Run Dijkstra’s on RootSet
Send Messages to Remote Vertices
VoteToHalt()

¥

Subgraph 3 Host 1

Note: Edges are Unweighted

22-Dec-15 RWCC Workshop

Subgraph 2

Host 2

Superstep 2

RootSet : {

D,H }
RemoteSet : {

3

H
}

16

Bl oreav:Lab [O

Stationary vs. Non-stationary Graph
Algorithms

= Stationary algorithms, e.g. PageRank

 Same amount of work done in each
iteration, by each worker

* Uniform resource utilization

» Non-Stationary algorithms, e.g. SSSP

* Different amount of work done in each
iteration, by each worker

» \Variable resource utilization
* Qver-allocation (or) Under-performance

Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis, “Mizan: a system for dynamic load
balancing in large-scale graph processing,” in EuroSys, 2013

22-Dec-15 RWCC Workshop 17

B DREAM:Lab

CPU Usage Across Iterations

= Orkut Graph (3M vertices, 234M edges)
= 40 cores, 5 machines

100 y— T
— Wasted Wasted B BFS EBC l
X 90 resources resources
§ 20 | | PageRank
> < >
w 70
o
S 60
S 50
e
S 40
E
= 30
2
o 20
? 10 I I
0 L
15 16

Superstep
Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015

B OREAM:Lab [O
Clouds Elasticity for Graph Processing

= Graph processing load changes with each
iteration

= Under-utilization & Higher cost to utility

* Challenge: Can we use "Elasticity” to
increase utilization?

1. Find the load in an iteration & Find the
partitions of the graph that are active

2. Use only as many VMs as needed & Place
active partitions on live /Ms

22-Dec-15 RWCC Workshop 19

B DREAM:Lab

| dejsiadng

Has
Source

w
=

o

[4)]

74

(1]

e

RV}

Th] m

Partition 3 _{ED

1) Graph with 13 vertices/13 edges (small %
gray circles & lines) divided into three ©
Partitions (yellow rectangles). w

2) Four Subgraphs (farge purple circles,
labeled 1-4) identified within the partitions.

3) Meta-graph formed has four subgraphs as
meta-vertices & three meta-edges (purple
dashed line) connecting them.

m One partition placed in each VM for execution m BFS from
source vertex in Subgraph 2 causes only VM 2’s usage in
Superstep 1; VM 1 & 3 are idle m Subgraphs 1 & 3 are active in
Superstep 2, causing VMs 1 & 3 to be used, and VM 2 is idle m
Subgraph 4 active in Superstep 3 causes only VM 3 to be used

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015

Bl oreAm:Lab [O
Meta-Graphs for Algorithm Modelling

= “Meta-Vertices" are subgraphs
= [teration on which a meta-vertex in

active
(145 }.5.6.7,8,9,10) CE:

,5,6,7,8,9,10}

6480
Analysis of Subgraph-centric Distributed Shortest

Path Algorithm, Dindokar, Choudhury & Simmhan, 4,5,6,?,819,1 0}
IPDPS ParLearning workshop, 2015 —>

Bl DREAM:Lab .0‘1

Dijkstra's Prediction: Expected vs. Actual

2M/2.7M VV/E 450 1M/5M V/E 2.4M/5M V/E
1000 IR 2250
- . o) ©
200 350 & 50 @
=7 ‘2‘300 21500
E -~ E
3 600 £ 250 °
E @ IS E 1250
=500 s o ° =
3 g 200 2 1000 LB
iam § i
i u 150 & 750 @
300
200 100 S0
100 50 250
0| 0e 0
0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250 300 350 400 450 0 250 500 750 1000 1250 1500 1750 2000 2250
Actual Time (ms) Actual Time (ms)

Actual time (ms)

(a) California Road Network (CARN) (b) Web Google (WEBG) (c) Wiki Talk (WIKI)

e Dijkstra’s called exactly at superstep corresponding to traversal depth.

® Expected and observed time complexity matches closely.

e Outliers: Subgraph with source and subgraph with large number of
incoming messages

*Expected time is normalized by multiplying it by a constant o
*Plot showing only non tiny subgraphs (|U| > 100) 22

Bl oreAm:Lab [O
Graph Partition Placement on VMs

= How we can reduce the overall monetary
cost for running the graph algorithm

= with minimal impact on the makespan of the
algorithm,

" using partition placement strategies on
elastic VMs

= based on their activation schedule across
supersteps,

= as compared to a traditional hashing of
partitions onto a static set of VMs.

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015

22-Dec-15 RWCC Workshop 23

Bl oreAm:Lab [O
Default Strategy, Static Placement

= Partitions distributed across fixed count of VMs

= Uniform number of partitions per VM
» Load balanced for stationary algorithm

= Partitions placement is static across iterations

6 VMs used over 3 iterations 1/6 +5[6 +3/6 =

50% usage

Step O Step 1 Step 2 >4,

Bl oreAm:Lab [O
First Fit Decreasing (FFD)

= Number of \/Ms per iteration depends on load
» Elastic scale outand in

= Pack active partitions on available VMs
» Bin packing/knapsack problem

= Partition movement cost between iterations

4 VMs used over 3 iterations 1/3+5/6 +3[3 =
75% usage

Step O Step 2

Bl oreAm:Lab [O
Max Fit with Pinning (MF/P)

= Number of VMs per iteration depends on load
» Partial elastic scale out and in

= Partitions placement is static once pinned
e No movement cost
* Load distribution can be unbalanced

5 VMs used over 3 iterations

1/3 +5/6 + 3/6 =

60% usage

Step O Step 1 Step 2 -6

B DREAM:Lab

Under-utilization (Jess is better)

mLIVI/8P W USA/8P "1 Orkut/40P
w 20 18
< l_l
=
< 15
S
O
S 10
N
E
DO 5 4
Y 2 2
o
< i
> 0 —]
Default OPT FFD MF/P LA/P FFD-DM

(g) Under Utilization for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
22-Dec-15 RWCC Workshop 27

Bl oreAm:Lab [O
Monetary Cost (/ess is better)

mLIV)/8P W USA/8P 1 Orkut/40P

B
o

w
o

=

o
o
co

VM Billed Core-Mins
M
o

e

Default OPT FFD MF/P

(d) Core-Mins for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
22-Dec-15 RWCC Workshop 28

Bl oreAm:Lab [O
Makespan (/ess is better)

W LIV)/8P W USA/SP 71 Orkut/40P

co
o

72
68

o)
o

54 26

Makespan (Seconds)
M EaN
o o

_|
Default OPT FFD MF/P LA/P FFD-DM

(a) Makespan for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015
22-Dec-15 RWCC Workshop 29

DREAM:Lab

Edge+Cloud for
Event Processing in Io1

"Fog Computing™?

Bl oreAm:Lab [O
Big Data in the Age of IoT

PS1 z‘e[escaée

Large
Hadron
Collider

) 102 Sources

TB’s Data
Days to Proc.

Few Instruments,
Large Data Volume

Y,
1105 Sources
GB’s Data

Hours to Proc.

Many Devices,
Volume & Velocity
J

108 Sources
MB’s Data
<Mins to Proc.

Numerous Sensors,
High data Velocity

22-Dec-15 RWCC Workshop 31

Bl oreAm:Lab [O

[ISc Smart Water IoT Project

= Plan pumping operations for reliability
* Avoid water running out/overflow
* It can take 12 hrs to fill a large OHT
 Water scarcity for several weeks in the year

= Provide safer water
* Leakages, contamination from decades old N/W

= Reduce water usage for sustainability

* ISc avg: 400 Lit/day, Global std: 135 Lit/day
» Lack of visibility on usage footprint, sources
» Rain water harvesting, Water recycling plant

= Lower the cost
* Reduce water use & energy cost for pumping

22-Dec-15 32

Bl oreAm:Lab [O

Objectives

1. Can we use loT & Big Data technologies
to make campus “smarter”?
* i.e. the “infrastructure”, not the people ©

* More efficient, reliable & safe resource
delivery & management

* Initial Case Study: Water management

2. And in the process, understand the
technology and improve on it?
* For the Indian context!

22-Dec-15 RWCC Workshop 33

Yo Campus %7 Over Head Tank (OHT)
Area: 440 Acres, |
8 Km Perimeter
50 buildings:
Office, Hotel,
Residence, Stores

~—7- Ground Level Reserv. (GLR)
> Inlet Points

10,000 people _/L
10MW Power sl |
Consumed

40 Lakh Lit/Day
\Water Consumed

OHT 3
GLR 13
Inlet 4

22-Dec-15 RWCC Workshop

Bl oReAM:Lab [o 1

Over Head Tanks (OHT)

AL o) LR v

TPH (near Mechanical))NT Auditorium Chemical Stores Opposite to CENSE

Ground Level Reservoirs (GLR)

Opposite to Boys Hostel - ﬂar l\/‘l‘ss Near R Block

CENSE
35

Bl oreAm:Lab [O

Open, integrated & extensible IoT Technology Stack
for Smart Campus Resource Management

Hybrid sensing
Adaptive networking
Realtime Analytics

W N o=

making

» Experts to Close the Loop from

Network to Knowledge

» \/alidate using real-world
deployment @ /15¢

22-Dec-15 RWCC Workshop

Operationf

Scientist, Operator & Consumer

> = e [o
A B et - et it
‘ ;
\.' Ly

Decisions[i@n =5 &~ o7

Science-driven decision

Leakage &
Contamination
Detection

Pumping §;
Optimizatiory

Demand
Prediction i

Big Data Framework on Cloud

DataAnalytics & Event Processing Bad
[e

Information Ingest Pipeline & Stream Processing

<> ﬁ e1|~ork 0,05'

Policy

T+ 4

Collect events &

Archive QIS Network .
Eiii Map Monitoring & observations
Management

Org
Info

Infra
Info

Static Data

Dynamic Data

Low-Cost Sensors

= Based on commodity H/W,
iIn-house design, QC
* Robust to external use
= O(min) sampling

= \Water level sensors
* Water present in OHT, GLR
* Rate of inflow, outflow NINGS

= \Water Quality
* TDS, temperature
* Physical, not chemical

22-Dec-15 RWCC Workshop 37

B DREAM:Lab

Crowd-sourced Sensing

~

H KH NO, N

...’f °,::-‘ 0
gl . =% \ - |

GH P

-

© Jose Gomez-Marquez, MIT

= Cost-effective quality sensing thru’ Crowd Sourcing
 Paper-based design allows diverse users to test water
* Report via photo of card & Smart Phone App

» A simple colorimetric, diagnostic developed by MIT to test pH,
calcium (Ca2+), magnesium (Mg2+), carbonates (C032-),
bicarbonates (HCO-3), and nitrites (NO-2 and NO-3)

= Other ideas: App-based OCR Sensing for water meter

22-Dec-15 RWCC Workshop 38

COMMUNICATION

@® |cvel Sensor
> Flow Sensor
* Relay

® Gateway

—— Primary Link (Sub
GHz)

—— Secondary Link
(Zigbee)

22-Dec-15

N AL RN

O MR CHRCL)

RWCC Workshop

e East Block

39

Bl oreAm:Lab [O

Fast Data Processing

Complex Event Processing (CEP)

= Extract info from realtime, event sources
to help decision-making

* Specify queries on situations, patterns, causal
relationships

* Online analysis of 1000’s of Events per Sec

<Timestamp, Height>

Critical []

S?II:i Thi
Events ™"
0

Outliers

Time
*Data from Prof. Bharadwaj Amrutur, ECE, IISc

SELECT e FROM STREAM dese_oht WHERE e.height > 907%

SELECT e_hi, e _lo FROM STREAM rbccps_oht
WHERE (e_hi.height - e_lo.height) > 5%
WITHIN WINDOW(5mins)
22-Dec-15 RWCC Workshop 40

Bl oreAm:Lab [O

CEP Water Analytics Pipeline

#1- Outlier Screening | #2- Outlier Screening R #3- Average | #4- Qutlier Screening
1 2 3
#8.1- Time Window #7.1- Time Window #6- Critical Minimum #5- Critical Maximum

‘. | l l

2- Critical D
#8.2- Time Window #7.2- Critical Drop
Rate

| l

#8.2- Per Capita Rate
Stream

l

22-Dec-15 RWCC Workshop 41

Bl oreAm:Lab [O
Sample CEP Queries

1. Outlier Screening 1 : Only allow valid streams in the
first filtering - that are non negative and below the tank height.
from HeightEventStream [height = 0.0 and height <
tankHeight], insert into NonOutlierStreaml|.

2. Outlier Screening 2 : Only allow those streams with
water height that fall within 4 times the statically computed
standard deviation either way.
from NonQutlierStreaml [height > -4 * stdDev and height <
4 * stdDev], insert into NonOutlierStream?2.

3. Average stream : Find the average of the water height aggregation
of streams in an event window length of 3 to obtain a
reasonable measure of what range the height currently is at.
from NonOutlierStream2 # window.length(3), select
avg(height) as avgHrt, insert into AvgStream.

Sanity Checks

22-Dec-15 RWCC Workshop 42

Bl oreAm:Lab [O

Sample CEP Queries

5. Critical Maximum : When height of the water is above
90 of tank height, the stream is flagged as a critical stream
and tied to trigger an output/action to rectify the critically high
water level that may result in an overflow and thus wastage.

Analytics from NonOutlierStream [height > 0.9 * tankHeight], insert
into CriticalMaxStream.

6. Critical Minimum : When height is below 10 of tank
height, the stream is flageged as a critical stream and tied to
trigger an output/action to rectify the critically low water level
that may result in an underflow compared to requirements.
from NonOutlierStream [height < 0.1 * tankHeight] , insert
into CriticalMinStream.

22-Dec-15 RWCC Workshop 43

B DREAM:Lab

Big Data Platform on Edge+Cloud

Message Streaming

Broker Data Ingest Data Archive
Apache Apollo Apache Storm HBase
Sensing & Edge
Analytics Complex Evt.

Raspberry
Pi

Processing
Siddhi

Interactive
) Graph Analytics [l Batch Analytics
Analytics :
GoFFish Hadoop
Apache Spark

Android Analytics as a Service
: Dashboard &
Desktop Ll Viz. Logic

Client Device

Edge RwWCC Workshop Cloud hh

B DREAM:Lab

Analytics from Edge to Cloud
= Traditional CEP Processing has been centralized

= But loT Event sources are distributed
CEP only on Cloud? CEP only on Edge?

i i Limited Expressivity &
Compute Capability
Need to integrate realtime
with offline Big Data

= CEP in a distributed IoT environment
 Capable edge devices, Smart Phones
» Heterogeneous computing: Cloud + Edge
» Distributed realtime analytics for loT

Can we process event streams across Cloud & edge
through efficient query partitioning to meet QoS Goals?

22-Dec-15 RWCC Workshop 45

Bl oReAM:Lab [o 1

Edge+Cloud Sequence of Ops

Edge Cloud
ue
CEPLite Query
Planner
. Register
Cloud query|i[“cep query "
M Poll for CEP Segment Ji| Pipetine
o Qe Edge Query
SENSOR | Subscribe To Segment
. Events N Stream -
i Incoming Event : : :
.w)i Stream i : :
SENSOR Incoming Event_
stream CEPLite Output /
Siddhi Input Events |! |Siddhi & Pipeline Decision
T Output Events Engine
] REST/CoAP Service H H

Event Processing across Edge and the Cloud for Internet of Things Applications, Nithyashri

Do Govindarajan, Yogesh Simmbhan, Nitin Jamadagni and Prasant Misra, COMAD, Poster, 2014 LE
zz-0Dec-15

B DREAM:Lab

Optimization Problem

= Match a query Q within time
T of input events

= Constraints
* Network latency
 Data privacy
» Compute capability
* Expressivity

= Objective to Minimize
* Execution co%ts
* Energy consumption

22-Dec-15 RWCC Workshop 47

Bl oreAm:Lab [O

Solution Approach

= Solve optimization problem using dynamic
programming
» Model query as a DAG.
» Decide edge cut that meets objectives.
= Distributed CEP on Android & Cloud”
» CEPLite engine on Android
» Full featured Siddhi CEP on Cloud
= Deployment on IISc for Smart Campus
» Sustainable water management
» Tank Overflow, Refill, Leakages, Quality

22-Dec-15 RWCC Workshop 48

DREAM:Lab

Summary

22-Dec-15 RWCC Workshop 49

Bl oreAm:Lab [O
sSummary

= Clouds are de facto computing platforms

* "Cloud first” & "Mobile first” for most new
applications

= Big Data platforms are developed for
Clouds & Commodity Clusters

* Similar, but distinct distributed systems

= Clouds offer unique research challenges
» Elasticity, cost, power, privacy, latency

22-Dec-15 RWCC Workshop 50

DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES
Department of Computational & Data Sciences
Indian Institute of Science, Bangalore

DREAM:Lab

dream-lab.in Indian Institute of Science

Questions?
simmhan(@serc.iisc.in

©DREAM:Lab, 2016 7
This work is licensed under a Creative Commons Attribution 4.0 International License EY

http://creativecommons.org/licenses/by/4.0/deed.en_US

Bl oreAm:Lab [O

Acknowledgements

= Students & Collaborators
 Ravikant Dindokar, DREAM:Lab, IISc
* Neel Choudhury, DREAM:Lab, IISc

Viktor Prasanna, USC

Malati Hegde, ECE, l1Sc

Bharadwaj Amrutur, ECE, IISc

MS Mohankumar, Civil Engg, 11Sc

Rajesh Sundaresan, ECE, 1ISc

= Funding Agencies

DeitY, Government of India

Robert Bosch Centre for Cyber Physical Systems, 11Sc
Amazon AWS for Research

Microsoft Azure for Research

NetApp Inc.

