DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES Department of Computational & Data Sciences Indian Institute of Science, Bangalore

Leveraging Cloud Computing for Big Data Platforms

Yogesh Simmhan

RWCC Workshop, JNU, New Delhi

22-Dec-15

©DREAM:Lab, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

Cloud Computing End User's Perspective

- Expose capabilities
 - Compute, storage, prog. platforms, software

as a Service

• Using standard interfaces, REST/SOAP API

for on-demand usage

- Use as much or as little as you want without prior notification
- with pay as you go pricing
 - Pay only for what you use

Cloud Computing Service Provider's Perspective

- Use commodity clusters
 - Lowers cost of acquiring hardware off the shelf, but with lower reliability
- at large data centres
 - Large volume amortizes capex, reduces opex
- Iocated near cheap power sources
 - Electricity is typically largest opex
- managed by a Cloud fabric
 - Reduces management overhead, human intervention

Cloud Computing is Ubiquitous

- Online services
 - Hosting services, content, e.g. Facebook, web search
- Mobile apps
 - Back-end processing, e.g. WhatsApp, Maps/Directions
- Enterprises
 - Public/private Cloud model, SaaS, e.g. EMail, CRM
- Cloud Data Centres motivated Big Data platforms...

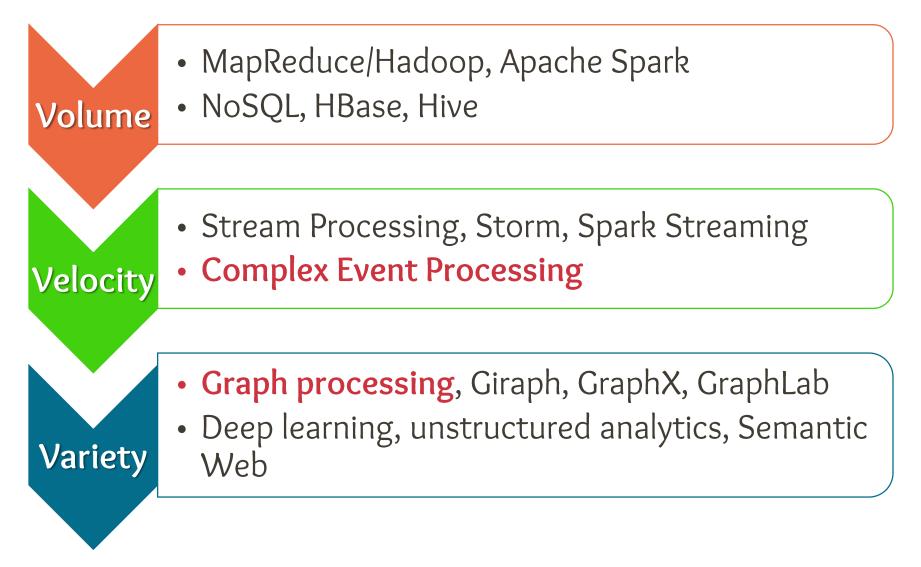
Cloud Computing for Big Data

- MapReduce was an outcome of *large web log data* and *Cloud data centres* at Google
- Designed for "slow" networks
 - Ethernet: Medium latency & bandwidth
- Designed for "Scale out"
 - More numbers of slower machines vs. one fast machine
- Designed to fail
 - Commodity servers and disks have lower reliability

Cloud Computing for Big Data: Map Reduce/Hadoop

- Designed for "slow" networks
 - Blocks of data rather than small messages
 - Synchronized boundaries
- Designed for "Scale out"
 - Distributed file system for cumulative I/O bandwidth
 - Map tasks are trivially parallelizable
- Designed to fail
 - Write state to disks for recovery
 - Tasks can be restart if slow/failed

Cloud Computing for Big Data Platforms



RWCC Workshop

Big Data Platforms Designed for Clouds

- Clouds...or Commodity Clusters
 - **Commodity clusters**: Commodity infrastructure
 - Clouds: Commodity infrastructure, ondemand elasticity & pricing, centralized data centre, massive scale-out, virtualized

What are the unique challenges & opportunities of Clouds for Big Data?

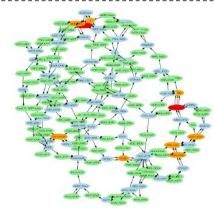
Elasticity for Distributed Graph Processing

Distributed Graph Processing

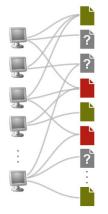
- Sources of massive data: petascale simulations, high throughput devices, Internet, scientific applications.
- New challenges for analysis: data sizes, heterogeneity, uncertainty, data quality, temporal variance

Bioinformatics

Problem: Genome & haplotype assembly, Expression Analysis Challenges: data quality Graph problems: Eulerian paths, MaxCut, String graphs



Cybersecurity Problem: Detecting anomalies and bad actors Challenges: scale, real-time Graph problems: belief propagation, community analysis



Social Informatics <u>Problem</u>: Discover emergent communities, spread of info. <u>Challenges</u>: new analytics routines, uncertainty in data. <u>Graph problems</u>: clustering, shortest paths, flows.

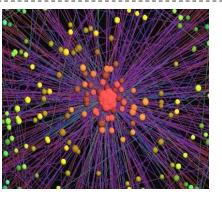


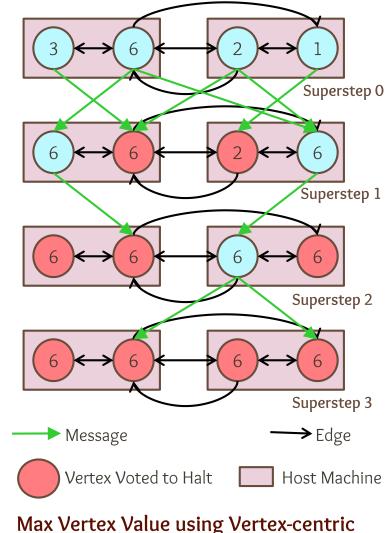
Image sources: (1) Mihai Pop, Carl Kingsford www.cbcb.umd.edu/ (2) Chau et al. In SIAM Data Mining (2011) (3) www.visualComplexity.com

Distributed Graph Programming Model

Vertex-centric Model

- Logic written for a single vertex
- Execution as series of synchronized *supersteps*
- Vertices *partitioned* across multiple hosts
- Message passing between vertices. *Messages delivered* at superstep boundaries.
- Parallelism at vertex level
- E.g. Google Pregel, Apache Giraph

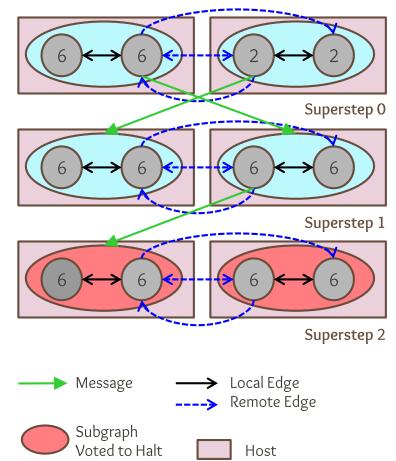
→ But, large communication cost, more time to converge



Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." ACM SIGMOD 2010.

Distributed Graph Programming Model

- Subgraph-centric Model
 - **Subgraph**: Weakly Connected Component (WCC) *within a partition*
- Logic written for a subgraph
 - Message passing between subgraphs
 - Parallelism at subgraph level
- Less communication cost, ~faster convergence
- E.g. GoFFish, Blogel, Giraph++



Max Vertex Value using Subgraph-centric

Y. Simmhan, et al., Goffish: A sub-graph centric framework for large-scale graph analytics, EuroPar, 2014. Yan, Da, et al. Blogel: A block-centric framework for distributed computation on real-world graphs, VLDB 2014

Vertex-centric Graph Processing PageRank*

if (getSuperstep() >= 1) { // update my PR from remote msgs
 double sum = 0;
 for (double m : messages) sum += m.value;
 double vertexValue = 0.15f/vertexCount() + 0.85f * sum;
 vertex.value = vertexValue;

```
}
```

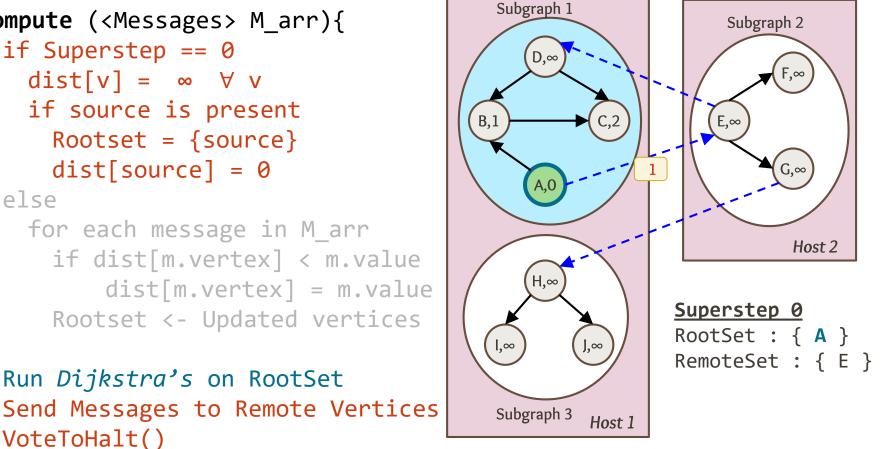
}

if (getSuperstep() < MAX_SUPERSTEPS) { // send my PR
 long edges = vertex.getNumEdges();
 sendMessageToAllEdges(vertex, vertex.value / edges);
} else
 vertex.voteToHalt();</pre>

VoteToHalt()

Subgraph-centric Graph Processing Djikstras / SSSP (Step 0)

```
Compute (<Messages> M arr){
 if Superstep == 0
   dist[v] = \infty \forall v
    if source is present
     Rootset = {source}
     dist[source] = 0
 else
   for each message in M_arr
     if dist[m.vertex] < m.value</pre>
          dist[m.vertex] = m.value
     Rootset <- Updated vertices
 Run Dijkstra's on RootSet
```



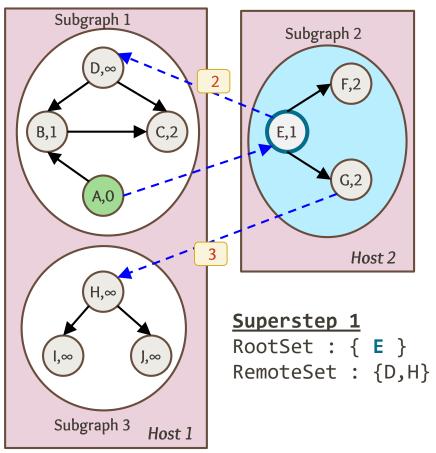
Note: Edges are Unweighted

Subgraph-centric Graph Processing Djikstras / SSSP (Step 1)

Compute (<Messages> M_arr){ if Superstep == 0 dist[v] = ∞ ∀ v if source is present Rootset = {source} dist[source] = 0 else for each message in M_arr

if dist[m.vertex] < m.value dist[m.vertex] = m.value Rootset <- Updated vertices</pre>

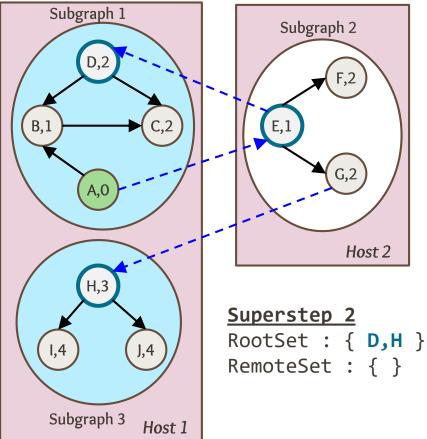
```
Run Dijkstra's on RootSet
Send Messages to Remote Vertices
VoteToHalt()
```



Note: Edges are Unweighted

Subgraph-centric Graph Processing Djikstras / SSSP (Step 2)

Compute (<Messages> M_arr){ if Superstep == 0 $dist[v] = \infty \forall v$ if source is present Rootset = {source} dist[source] = 0 else for each message in M_arr if dist[m.vertex] < m.value</pre> dist[m.vertex] = m.value Rootset <- Updated vertices Run *Dijkstra's* on RootSet Send Messages to Remote Vertices VoteToHalt()



Note: Edges are Unweighted

Stationary vs. Non-stationary Graph Algorithms

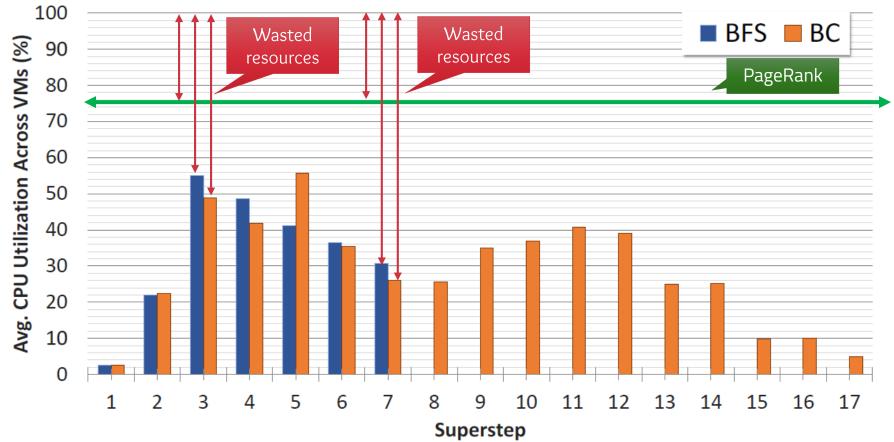
- Stationary algorithms, e.g. PageRank
 - Same amount of work done in each iteration, by each worker
 - Uniform resource utilization
- Non-Stationary algorithms, *e.g. SSSP*
 - Different amount of work done in each iteration, by each worker
 - Variable resource utilization
 - Over-allocation (or) Under-performance

Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis, "Mizan: a system for dynamic load balancing in large-scale graph processing," in EuroSys, 2013

RWCC Workshop

CPU Usage Across Iterations

Orkut Graph (3M vertices, 234M edges)
40 cores, 5 machines



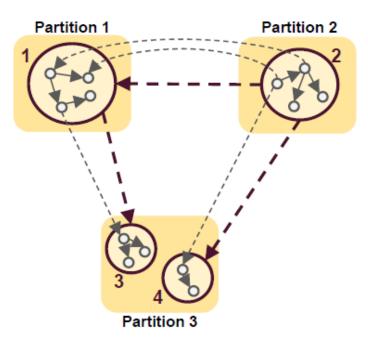
Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015

Clouds Elasticity for Graph Processing

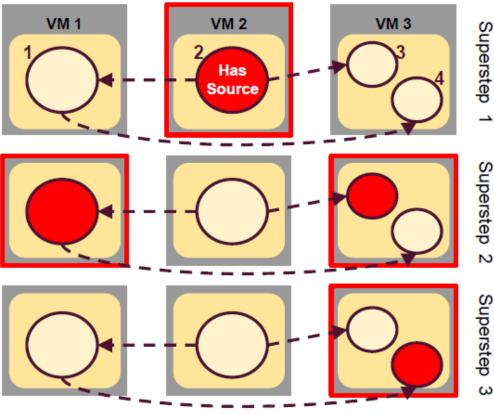
- Graph processing load changes with each iteration
- Under-utilization

 Higher cost to utility
- Challenge: Can we use "Elasticity" to increase utilization?
 - 1. Find the load in an iteration *Find the partitions of the graph that are active*
 - 2. Use only as many VMs as needed *Place active partitions on live VMs*

Predicting Active Partitions: BFS



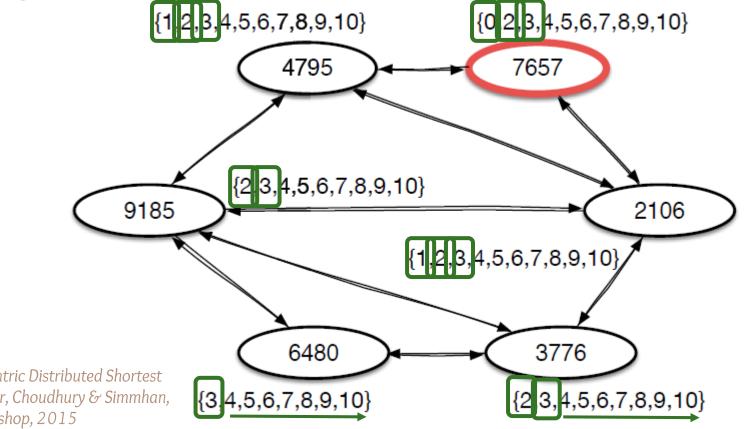
- 1) Graph with 13 vertices/13 edges (small gray circles & lines) divided into three Partitions (yellow rectangles).
- 2) Four Subgraphs (large purple circles, labeled 1-4) identified within the partitions.
- 3) Meta-graph formed has four subgraphs as meta-vertices & three meta-edges (*purple dashed line*) connecting them.



■ One partition placed in each VM for execution ■ BFS from source vertex in Subgraph 2 causes only VM 2's usage in Superstep 1; VM 1 & 3 are idle ■ Subgraphs 1 & 3 are active in Superstep 2, causing VMs 1 & 3 to be used, and VM 2 is idle ■ Subgraph 4 active in Superstep 3 causes only VM 3 to be used

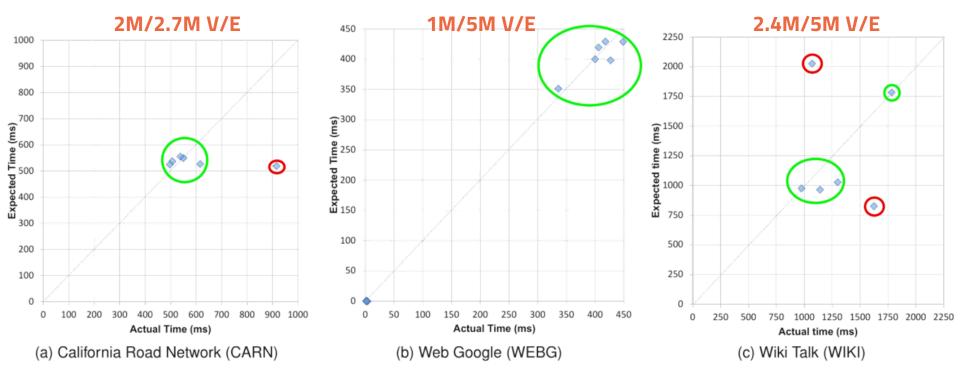
Meta-Graphs for Algorithm Modelling

- "Meta-Vertices" are subgraphs
- Iteration on which a meta-vertex in active



Analysis of Subgraph-centric Distributed Shortest Path Algorithm, Dindokar, Choudhury & Simmhan, IPDPS ParLearning workshop, 2015

Dijkstra's Prediction: Expected vs. Actual



- Dijkstra's called exactly at superstep corresponding to traversal depth.
- Expected and observed time complexity matches closely.
- Outliers: Subgraph with source and subgraph with large number of incoming messages

*Expected time is normalized by multiplying it by a constant α *Plot showing only non tiny subgraphs (|V| > 100)

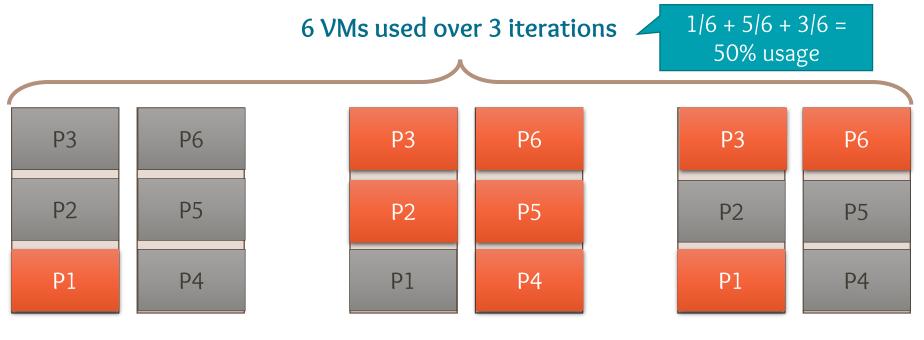
Graph Partition Placement on VMs

- How we can reduce the *overall monetary cost* for running the graph algorithm
- with *minimal impact on the makespan* of the algorithm,
- using *partition placement strategies* on elastic VMs
- based on their *activation schedule* across supersteps,
- as compared to a traditional hashing of partitions onto a static set of VMs.

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015

Default Strategy, Static Placement

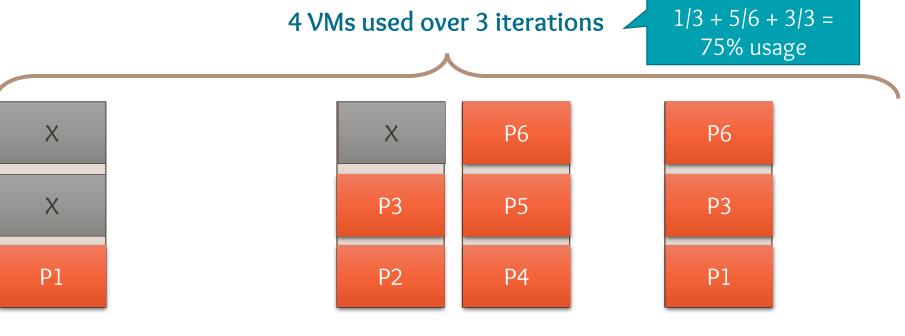
- Partitions distributed across fixed count of VMs
- Uniform number of partitions per VM
 - Load balanced for stationary algorithm
- Partitions placement is static across iterations



Step 0

First Fit Decreasing (FFD)

- Number of VMs per iteration depends on load
 - Elastic scale out and in
- Pack active partitions on available VMs
 - Bin packing/knapsack problem
- Partition movement cost between iterations

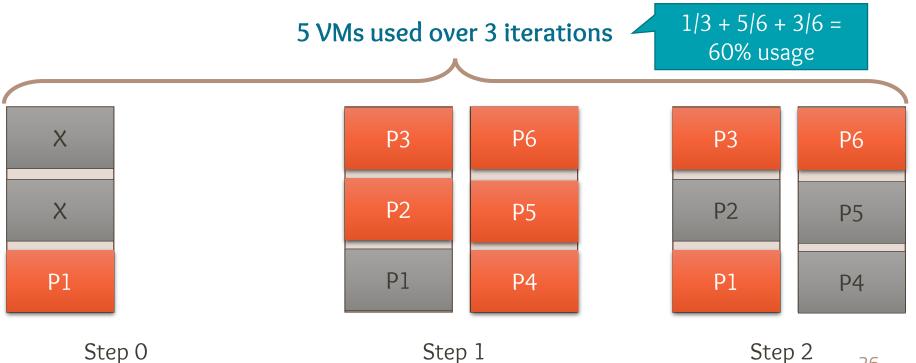


Step 0

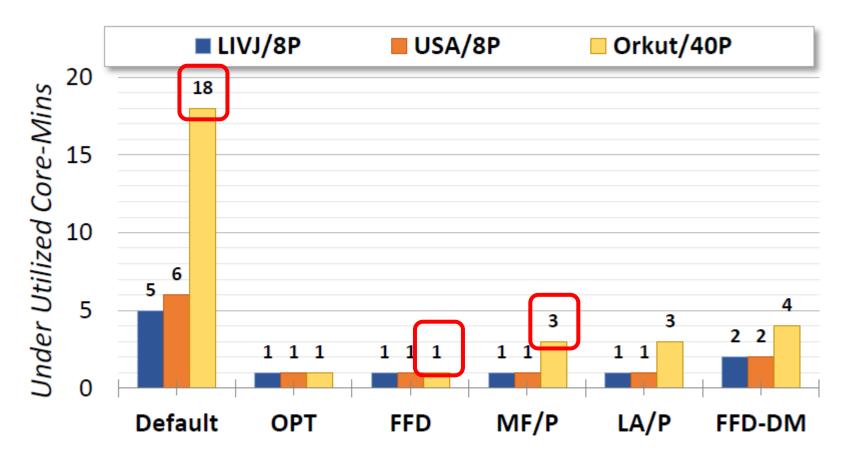
26

Max Fit with Pinning (MF/P)

- Number of VMs per iteration depends on load
 - Partial elastic scale out and in
- Partitions placement is static once pinned
 - No movement cost
 - Load distribution can be unbalanced



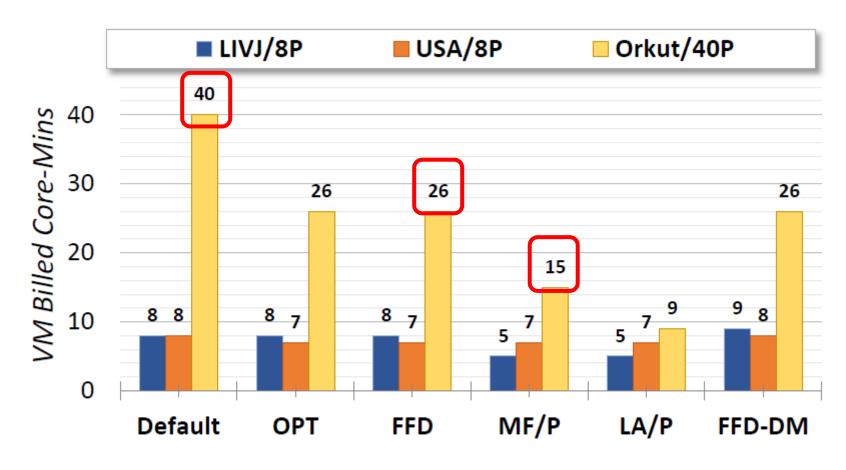
Under-utilization *(less is better)*



(g) Under Utilization for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015 22-Dec-15 RWCC Workshop 27

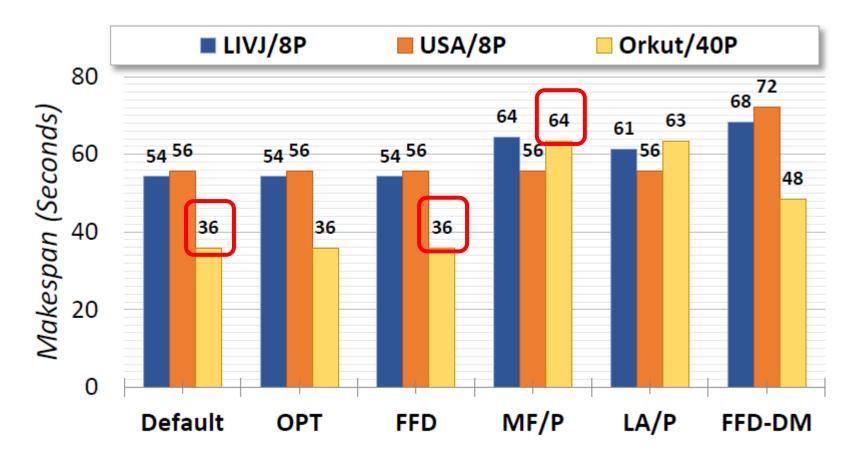
Monetary Cost *(less is better)*



(d) Core-Mins for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015 22-Dec-15 RWCC Workshop 28

Makespan *(less is better)*



(a) Makespan for BFS

Elastic Resource Allocation for Non-stationary Distributed Graph Algorithms, Ravikant Dindokar and Yogesh Simmhan, Under review, 2015 22-Dec-15 RWCC Workshop 29

Edge+Cloud for Event Processing in IoT

"Fog Computing"?

Big Data in the Age of IoT

Large Hadron Collider

Illumina NGS @ IISc

Bluetooth Mote



Smart Meter @ LADWP

Few Instruments, Large Data **Volume**

Many Devices, Volume & Velocity

Numerous Sensors, High data **Velocity** 10² Sources TB's Data Days to Proc.

10⁵ Sources GB's Data Hours to Proc.

10⁸ Sources MB's Data <Mins to Proc.

IISc Smart Water IoT Project

- Plan pumping operations for reliability
 - Avoid water running out/overflow
 - It can take 12 hrs to fill a large OHT
 - Water scarcity for several weeks in the year
- Provide safer water
 - Leakages, contamination from decades old N/W
- Reduce water usage for sustainability
 - IISc avg: 400 Lit/day, Global std: 135 Lit/day
 - Lack of visibility on usage footprint, sources
 - Rain water harvesting, Water recycling plant
- Lower the cost
 - Reduce water use & energy cost for pumping

Objectives

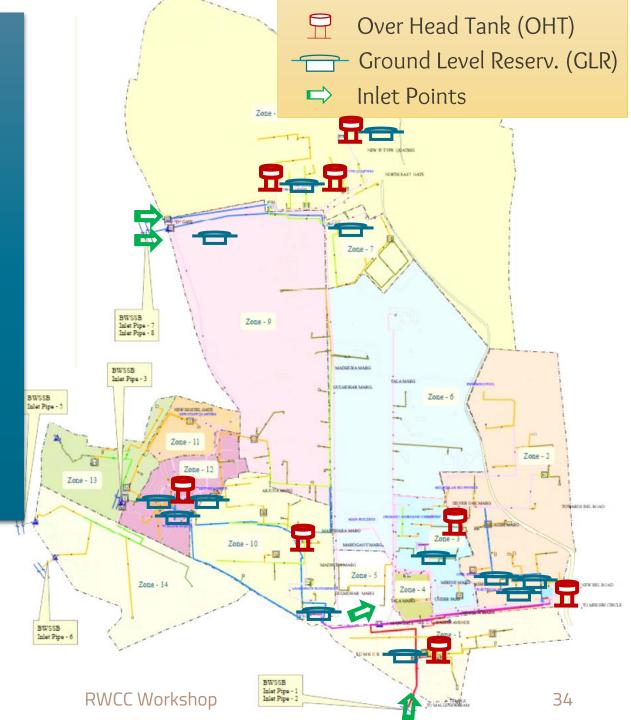
- 1. Can we use IoT & Big Data technologies to make campus "smarter"?
 - i.e. the "infrastructure", not the people ③
 - More efficient, reliable & safe resource delivery & management
 - Initial Case Study: Water management
- 2. And in the process, understand the technology and improve on it?
 - For the Indian context!

IISc Campus

- Area: 440 Acres, 8 Km Perimeter
- 50 buildings: Office, Hotel, Residence, Stores
- 10,000 people
- 10MW Power Consumed
- 40 Lakh Lit/Day Water Consumed

OHT	8
GLR	13
Inlet	4

22-Dec-15



Over Head Tanks (OHT)

TPH (near Mechanical)

JNT Auditorium

Chemical Stores

Ground Level Reservoirs (GLR)

Opposite to CENSE

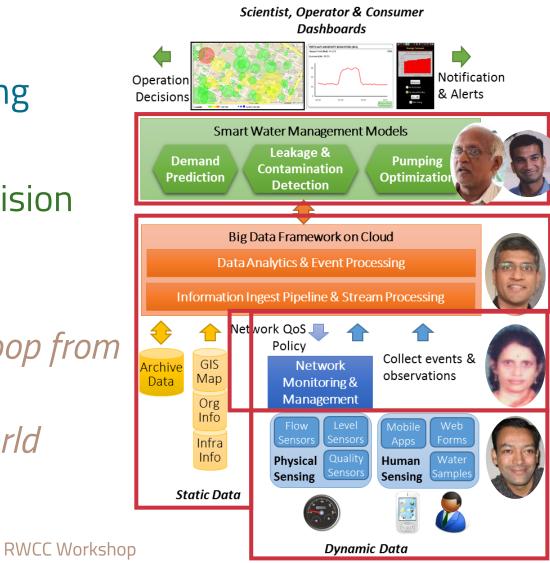
Boys Hostel

Near C Mess

Near R Block

Open, integrated & extensible **IoT Technology Stack** for Smart Campus Resource Management

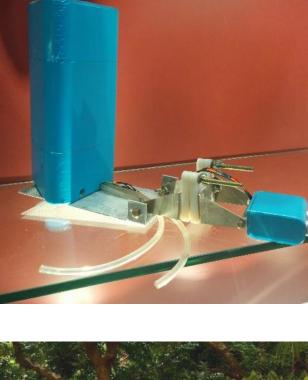
- 1. Hybrid sensing
- 2. Adaptive networking
- 3. Realtime Analytics
- 4. Science-driven decision making
- » Experts to Close the Loop from Network to Knowledge
- » Validate using *real-world deployment* @ *IISc*



22-Dec-15

Low-Cost Sensors

- Based on commodity H/W, in-house design, QC
 - Robust to external use
 - O(min) sampling
- Water level sensors
 - Water present in OHT, GLR
 - Rate of inflow, outflow
- Water Quality
 - TDS, temperature
 - Physical, not chemical



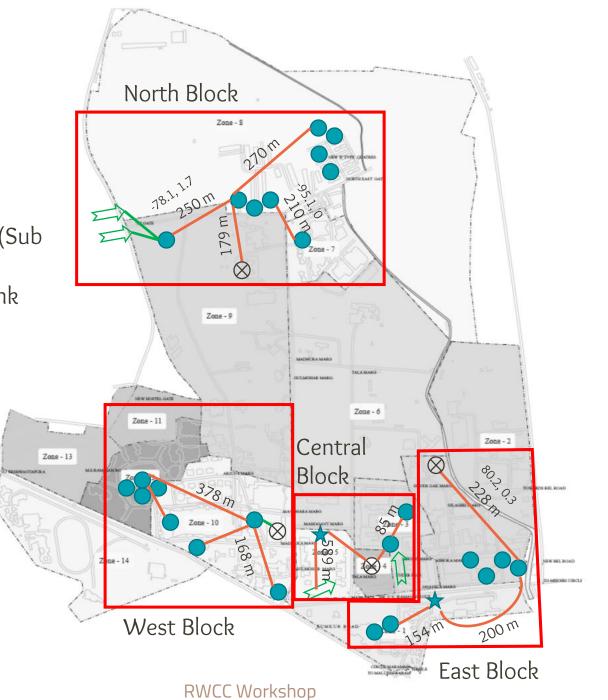
Crowd-sourced Sensing

© Jose Gomez-Marquez, MIT

- Cost-effective quality sensing thru' Crowd Sourcing
 - Paper-based design allows diverse users to test water
 - Report via photo of card & Smart Phone App
 - A simple colorimetric, diagnostic developed by MIT to test *pH, calcium (Ca2+), magnesium (Mg2+), carbonates (CO32-), bicarbonates (HCO-3), and nitrites (NO-2 and NO-3)*
- Other ideas: App-based OCR Sensing for water meter

COMMUNICATION

- Level Sensor
- ➡ Flow Sensor
- 🖈 Relay
- ⊗ Gateway
- Primary Link (Sub GHz)
- ----- Secondary Link (Zigbee)



Fast Data Processing

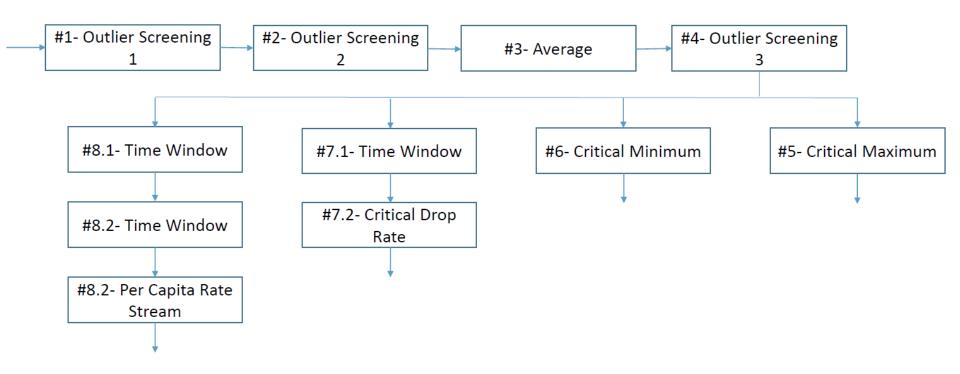
Complex Event Processing (CEP)

- Extract info from realtime, event sources to help *decision-making*
 - Specify *queries* on situations, patterns, causal relationships
 - Online analysis of 1000's of Events per Sec

SELECT e FROM STREAM dese_oht WHERE e.height > 90%

```
SELECT e_hi, e_lo FROM STREAM rbccps_oht
WHERE (e_hi.height - e_lo.height) > 5%
WITHIN WINDOW(5mins)
```


CEP Water Analytics Pipeline



Sample CEP Queries

1. Outlier Screening 1 : Only allow valid streams in the first filtering - that are non negative and below the tank height. *from HeightEventStream [height \geq 0.0 and height \leq tankHeight], insert into NonOutlierStream1.*

2. Outlier Screening 2 : Only allow those streams with water height that fall within 4 times the statically computed standard deviation either way.

from NonOutlierStream1 [height > -4 * stdDev and height < 4 * stdDev], insert into NonOutlierStream2.

3. Average stream : Find the average of the water height Aggregation of streams in an event window length of 3 to obtain a reasonable measure of what range the height currently is at. *from NonOutlierStream2 # window.length(3), select avg(height) as avgHt, insert into AvgStream.*

22-Dec-15

Sample CEP Queries

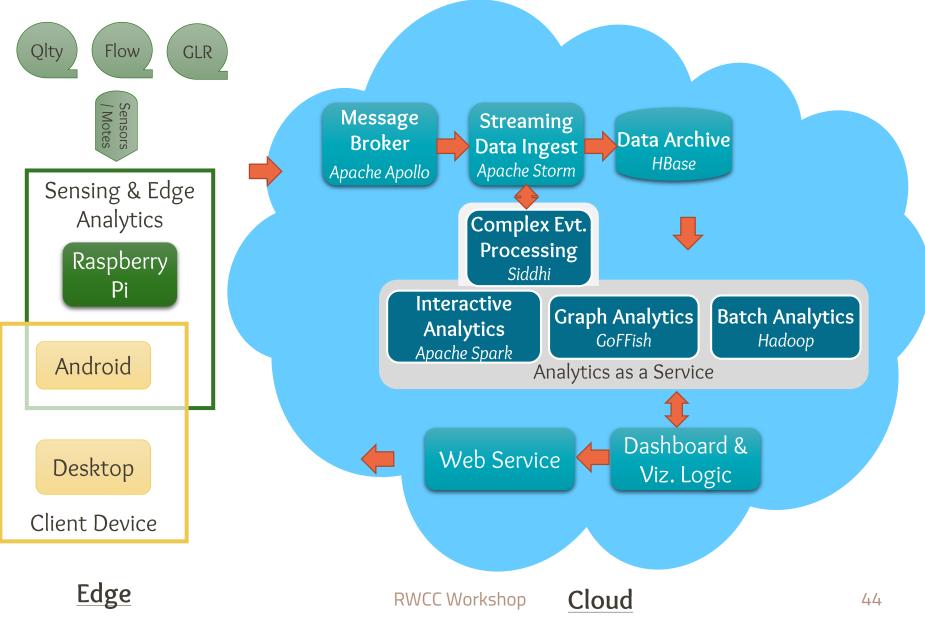
into CriticalMaxStream.

5. Critical Maximum : When height of the water is above 90 of tank height, the stream is flagged as a critical stream and tied to trigger an output/action to rectify the critically high water level that may result in an overflow and thus wastage. *from NonOutlierStream [height > 0.9 * tankHeight], insert*

Analytics

6. Critical Minimum : When height is below 10 of tank height, the stream is flagged as a critical stream and tied to trigger an output/action to rectify the critically low water level that may result in an underflow compared to requirements. *from NonOutlierStream [height < 0.1 * tankHeight] , insert into CriticalMinStream.*

Big Data Platform on *Edge+Cloud*



Analytics from Edge to Cloud

- Traditional CEP Processing has been centralized
 - But IoT Event sources are distributed

CEP in a distributed IoT environment

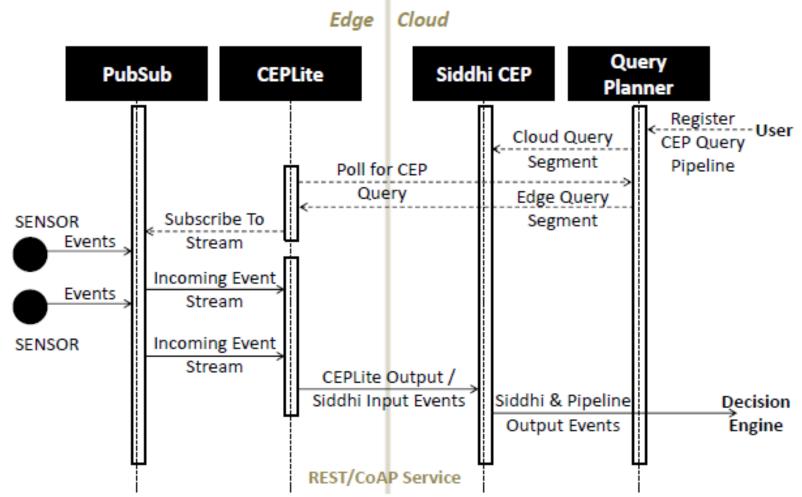
- Capable edge devices, Smart Phones
- Heterogeneous computing: Cloud + Edge
- Distributed realtime analytics for IoT

Can we process event streams across Cloud & edge through efficient query partitioning to meet QoS Goals?

22-Dec-15

RWCC Workshop

Edge+Cloud Sequence of Ops



Event Processing across Edge and the Cloud for Internet of Things Applications, Nithyashri Govindarajan, Yogesh Simmhan, Nitin Jamadagni and Prasant Misra, *COMAD*, Poster, 2014

46

Optimization Problem

- Match a query **Q** within time
 T of input events
- Constraints
 - Network latency
 - Data privacy
 - Compute capability
 - Expressivity
- Objective to Minimize
 - Execution co\$ts
 - Energy consumption

Solution Approach

- Solve optimization problem using *dynamic* programming
 - » Model query as a DAG.
 - » Decide edge cut that meets objectives.
- Distributed CEP on Android & Cloud*
 - » CEPLite engine on Android
 - » Full featured *Siddhi CEP* on Cloud
- Deployment on IISc for Smart Campus
 - » Sustainable water management
 - » Tank Overflow, Refill, Leakages, Quality

Summary

- Clouds are *de facto* computing platforms
 - "Cloud first" & "Mobile first" for most new applications
- Big Data platforms are developed for Clouds & Commodity Clusters
 - Similar, but distinct distributed systems
- Clouds offer unique research challenges
 - Elasticity, cost, power, privacy, latency

DISTRIBUTED RESEARCH ON EMERGING APPLICATIONS & MACHINES Department of Computational & Data Sciences Indian Institute of Science, Bangalore

DREAM:Lab

dream-lab.in

Indian Institute of Science

Questions?

simmhan@serc.iisc.in

©DREAM:Lab, 2016 This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>

Acknowledgements

Students & Collaborators

- Ravikant Dindokar, DREAM:Lab, IISc
- Neel Choudhury, DREAM:Lab, IISc
- Viktor Prasanna, USC
- Malati Hegde, ECE, IISc
- Bharadwaj Amrutur, ECE, IISc
- MS Mohankumar, Civil Engg, IISc
- Rajesh Sundaresan, ECE, IISc

Funding Agencies

- DeitY, Government of India
- Robert Bosch Centre for Cyber Physical Systems, IISc
- Amazon AWS for Research
- Microsoft Azure for Research
- NetApp Inc.